These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38083218)

  • 41. Unilateral versus bilateral robot-assisted rehabilitation on arm-trunk control and functions post stroke: a randomized controlled trial.
    Wu CY; Yang CL; Chen MD; Lin KC; Wu LL
    J Neuroeng Rehabil; 2013 Apr; 10():35. PubMed ID: 23587106
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.
    Iuppariello L; D'Addio G; Romano M; Bifulco P; Lanzillo B; Pappone N; Cesarelli M
    G Ital Med Lav Ergon; 2016; 38(2):116-27. PubMed ID: 27459844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information.
    Strauss S; Woodgate PJ; Sami SA; Heinke D
    Neural Netw; 2015 Dec; 72():3-12. PubMed ID: 26667353
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait.
    Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Force Analysis and Evaluation of a Pelvic Support Walking Robot with Joint Compliance.
    Ji J; Guo S; Xi FJ
    J Healthc Eng; 2018; 2018():9235023. PubMed ID: 30622691
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An adaptive spinal-like controller: tunable biomimetic behavior for a robotic limb.
    Stefanovic F; Galiana HL
    Biomed Eng Online; 2014 Nov; 13():151. PubMed ID: 25409735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measuring the dynamic impedance of the human arm without a force sensor.
    Dyck M; Tavakoli M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650349. PubMed ID: 24187168
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arm stiffness during assisted movement after stroke: the influence of visual feedback and training.
    Piovesan D; Morasso P; Giannoni P; Casadio M
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):454-65. PubMed ID: 23193322
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Introduction to a Twin Dual-Axis Robotic Platform for Studies of Lower Limb Biomechanics.
    Russell JB; Phillips CM; Auer MR; Phan V; Jo K; Save O; Nalam V; Lee H
    IEEE J Transl Eng Health Med; 2023; 11():282-290. PubMed ID: 37275470
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments.
    Gomi H; Osu R
    J Neurosci; 1998 Nov; 18(21):8965-78. PubMed ID: 9787002
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design and development of an upper extremity motion capture system for a rehabilitation robot.
    Nanda P; Smith A; Gebregiorgis A; Brown EE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7135-8. PubMed ID: 19963692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robot-assisted walking vs overground walking in stroke patients: an evaluation of muscle activity.
    Coenen P; van Werven G; van Nunen MP; Van Dieën JH; Gerrits KH; Janssen TW
    J Rehabil Med; 2012 Apr; 44(4):331-7. PubMed ID: 22453772
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interday Reliability of Upper-limb Geometric MyoPassivity Map for Physical Human-Robot Interaction.
    Zhou X; Paik P; O'Keeffe R; Atashzar SF
    IEEE Trans Haptics; 2023; 16(4):658-664. PubMed ID: 37200129
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke.
    Chang JJ; Tung WL; Wu WL; Huang MH; Su FC
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Small forces that differ with prior motor experience can communicate movement goals during human-human physical interaction.
    Sawers A; Bhattacharjee T; McKay JL; Hackney ME; Kemp CC; Ting LH
    J Neuroeng Rehabil; 2017 Jan; 14(1):8. PubMed ID: 28143521
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke.
    Bosecker C; Dipietro L; Volpe B; Krebs HI
    Neurorehabil Neural Repair; 2010 Jan; 24(1):62-9. PubMed ID: 19684304
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Omnidirectional Continuous Movement Method of Dual-Arm Robot in a Space Station.
    Zhang Z; Wang Z; Zhou Z; Li H; Zhang Q; Zhou Y; Li X; Liu W
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299752
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimation of Energy Absorption Capability of Arm Using Force Myography for Stable Human-Machine Interaction.
    Ramos A; Hashtrudi-Zaad K
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4758-4761. PubMed ID: 33019054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.