BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38083253)

  • 1. Self-supervised Signal Denoising for Magnetic Particle Imaging.
    Peng H; Li Y; Yang X; Tian J; Hui H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for improving the spatial resolution of magnetic particle imaging.
    Shang Y; Liu J; Zhang L; Wu X; Zhang P; Yin L; Hui H; Tian J
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35533677
    [No Abstract]   [Full Text] [Related]  

  • 3. Magnetic particle imaging: current developments and future directions.
    Panagiotopoulos N; Duschka RL; Ahlborg M; Bringout G; Debbeler C; Graeser M; Kaethner C; Lüdtke-Buzug K; Medimagh H; Stelzner J; Buzug TM; Barkhausen J; Vogt FM; Haegele J
    Int J Nanomedicine; 2015; 10():3097-114. PubMed ID: 25960650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighted sum of harmonic signals for direct imaging in magnetic particle imaging.
    Liu Y; Hui H; Liu S; Li G; Zhang B; Zhong J; An Y; Tian J
    Phys Med Biol; 2022 Dec; 68(1):. PubMed ID: 36573436
    [No Abstract]   [Full Text] [Related]  

  • 5. In vivo Preclinical Tumor-Specific Imaging of Superparamagnetic Iron Oxide Nanoparticles Using Magnetic Particle Imaging for Cancer Diagnosis.
    Park SJ; Han SR; Kang YH; Lee EJ; Kim EG; Hong H; Jeong JC; Lee MS; Lee SH; Song DY
    Int J Nanomedicine; 2022; 17():3711-3722. PubMed ID: 36051351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic edge-preserving network for resolution enhancement in unidirectional Cartesian magnetic particle imaging.
    Shang Y; Liu J; Liu Y; Zhang B; Wu X; Zhang L; Tong W; Hui H; Tian J
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36689774
    [No Abstract]   [Full Text] [Related]  

  • 7. MPIGAN: An end-to-end deep based generative framework for high-resolution magnetic particle imaging reconstruction.
    Zhao J; Shen Y; Liu X; Hou X; Ding X; An Y; Hui H; Tian J; Zhang H
    Med Phys; 2024 May; ():. PubMed ID: 38700948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.
    Bente K; Weber M; Graeser M; Sattel TF; Erbe M; Buzug TM
    IEEE Trans Med Imaging; 2015 Feb; 34(2):644-51. PubMed ID: 25350924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Content-Noise Feature Fusion Neural Network for Image Denoising in Magnetic Particle Imaging
    Wang T; Zhang L; Wei Z; Shen Y; Tian J; Hui H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Quantitative Analysis Method for Magnetic Particle Imaging Based on Deblurring and Region Scalable Fitting.
    Wang L; Huang Y; Zhao Y; Tian J; Zhang L; Du Y
    Mol Imaging Biol; 2023 Aug; 25(4):788-797. PubMed ID: 36973569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape Anisotropy-Governed High-Performance Nanomagnetosol for In Vivo Magnetic Particle Imaging of Lungs.
    Nigam S; Mohapatra J; Makela AV; Hayat H; Rodriguez JM; Sun A; Kenyon E; Redman NA; Spence D; Jabin G; Gu B; Ashry M; Sempere LF; Mitra A; Li J; Chen J; Wei GW; Bolin S; Etchebarne B; Liu JP; Contag CH; Wang P
    Small; 2024 Feb; 20(5):e2305300. PubMed ID: 37735143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach.
    Pantke D; Holle N; Mogarkar A; Straub M; Schulz V
    Med Phys; 2019 Sep; 46(9):4077-4086. PubMed ID: 31183873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells.
    Lindemann A; Lüdtke-Buzug K; Fräderich BM; Gräfe K; Pries R; Wollenberg B
    Int J Nanomedicine; 2014; 9():5025-40. PubMed ID: 25378928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-selective signal enhancement by a passive dual coil resonator for magnetic particle imaging.
    Pantke D; Mueller F; Reinartz S; Philipps J; Mohammadali Dadfar S; Peters M; Franke J; Schrank F; Kiessling F; Schulz V
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35472698
    [No Abstract]   [Full Text] [Related]  

  • 15. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI).
    Du Y; Lai PT; Leung CH; Pong PW
    Int J Mol Sci; 2013 Sep; 14(9):18682-710. PubMed ID: 24030719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic Particle Imaging (MPI): Experimental Quantification of Vascular Stenosis Using Stationary Stenosis Phantoms.
    Vaalma S; Rahmer J; Panagiotopoulos N; Duschka RL; Borgert J; Barkhausen J; Vogt FM; Haegele J
    PLoS One; 2017; 12(1):e0168902. PubMed ID: 28056102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic Particle Imaging Is a Sensitive In Vivo Imaging Modality for the Detection of Dendritic Cell Migration.
    Gevaert JJ; Fink C; Dikeakos JD; Dekaban GA; Foster PJ
    Mol Imaging Biol; 2022 Dec; 24(6):886-897. PubMed ID: 35648316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI).
    Bauer LM; Situ SF; Griswold MA; Samia AC
    Nanoscale; 2016 Jun; 8(24):12162-9. PubMed ID: 27210742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. System matrix recovery based on deep image prior in magnetic particle imaging.
    Yin L; Guo H; Zhang P; Li Y; Hui H; Du Y; Tian J
    Phys Med Biol; 2023 Jan; 68(3):. PubMed ID: 36584394
    [No Abstract]   [Full Text] [Related]  

  • 20. Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil.
    Graeser M; Knopp T; Szwargulski P; Friedrich T; von Gladiss A; Kaul M; Krishnan KM; Ittrich H; Adam G; Buzug TM
    Sci Rep; 2017 Jul; 7(1):6872. PubMed ID: 28761103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.