These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38083276)

  • 1. KL Divergence-based transfer learning for cross-subject eye movement recognition with EOG signals.
    Su R; Zeng Z; Tao L; Wang Z; Chen C; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EOG Signal Classification with Wavelet and Supervised Learning Algorithms KNN, SVM and DT.
    Hernández Pérez SN; Pérez Reynoso FD; Gutiérrez CAG; Cosío León MLÁ; Ortega Palacios R
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms.
    Chang WD; Cha HS; Im CH
    Sensors (Basel); 2016 Feb; 16(2):227. PubMed ID: 26907271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic removal of eye-movement and blink artifacts from EEG signals.
    Gao JF; Yang Y; Lin P; Wang P; Zheng CX
    Brain Topogr; 2010 Mar; 23(1):105-14. PubMed ID: 20039116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised Transfer Learning Approach With Adaptive Reweighting and Resampling Strategy for Inter-subject EOG-based Gaze Angle Estimation.
    Zeng Z; Tao L; Su R; Zhu Y; Meng L; Tuheti A; Huang H; Shu F; Chen W; Chen C
    IEEE J Biomed Health Inform; 2023 Nov; PP():. PubMed ID: 37930926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature selection in classification of eye movements using electrooculography for activity recognition.
    Mala S; Latha K
    Comput Math Methods Med; 2014; 2014():713818. PubMed ID: 25574185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for detection of dyslexia using convolutional neural network with EOG signals.
    Ileri R; Latifoğlu F; Demirci E
    Med Biol Eng Comput; 2022 Nov; 60(11):3041-3055. PubMed ID: 36063351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain.
    Woestenburg JC; Verbaten MN; Slangen JL
    Biol Psychol; 1983; 16(1-2):127-47. PubMed ID: 6850023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weighted Transfer Learning for Improving Motor Imagery-Based Brain-Computer Interface.
    Azab AM; Mihaylova L; Ang KK; Arvaneh M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1352-1359. PubMed ID: 31217122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated and modified technique for testing the retinal function (Arden test) by use of the electro-oculogram (EOG) for clinical and research use.
    Behrens F; Weiss LR
    Doc Ophthalmol; 1998-1999; 96(4):283-92. PubMed ID: 10855804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification.
    Martínez-Cerveró J; Ardali MK; Jaramillo-Gonzalez A; Wu S; Tonin A; Birbaumer N; Chaudhary U
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep stage classification using single-channel EOG.
    Rahman MM; Bhuiyan MIH; Hassan AR
    Comput Biol Med; 2018 Nov; 102():211-220. PubMed ID: 30170769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Investigation of Wavelet Families for Classification of EOG Signals Related to Healthy and ADHD Children.
    Ayoubipour S; Sho'ouri N
    Clin EEG Neurosci; 2024 Jan; 55(1):11-21. PubMed ID: 37605610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring eye movement with a computer based Electro-oculogram (EOG).
    Dibble JM; Teters CK
    Biomed Sci Instrum; 2004; 40():463-8. PubMed ID: 15134002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using eye movement to control a computer: a design for a lightweight electro-oculogram electrode array and computer interface.
    Iáñez E; Azorin JM; Perez-Vidal C
    PLoS One; 2013; 8(7):e67099. PubMed ID: 23843986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Single-Channel EOG-Based Speller.
    He S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1978-1987. PubMed ID: 28641264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EOG-based eye movement recognition using GWO-NN optimization.
    Mulam H; Mudigonda M
    Biomed Tech (Berl); 2020 Jan; 65(1):11-22. PubMed ID: 31393829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J; Yoon H; Park KS
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust EOG-based saccade recognition using multi-channel blind source deconvolution.
    Zhang B; Bi N; Zhang C; Gao X; Lv Z
    Biomed Tech (Berl); 2019 May; 64(3):309-324. PubMed ID: 29975664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for EOG features extraction from the forehead.
    Cai HY; Ma JX; Shi LC; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3075-8. PubMed ID: 22254989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.