These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38083297)

  • 21. The impact of 4D-Flow MRI spatial resolution on patient-specific CFD simulations of the thoracic aorta.
    Cherry M; Khatir Z; Khan A; Bissell M
    Sci Rep; 2022 Sep; 12(1):15128. PubMed ID: 36068322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations.
    Midulla M; Moreno R; Baali A; Chau M; Negre-Salvayre A; Nicoud F; Pruvo JP; Haulon S; Rousseau H
    Eur Radiol; 2012 Oct; 22(10):2094-102. PubMed ID: 22645039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MRI in CFD for chronic type B aortic dissection: Ready for prime time?
    Wang Q; Guo X; Brooks M; Chuen J; Poon EKW; Ooi A; Lim RP
    Comput Biol Med; 2022 Nov; 150():106138. PubMed ID: 36191393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient-specific geometries and inflow rates.
    Karmonik C; Bismuth JX; Davies MG; Lumsden AB
    Technol Health Care; 2008; 16(5):343-54. PubMed ID: 19126973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.
    Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D
    J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow visualization of recurrent aneurysms after coil embolization by 3D phase-contrast MRI.
    Kono K; Terada T
    Acta Neurochir (Wien); 2014 Nov; 156(11):2035-40. PubMed ID: 25257134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow characteristics in a canine aneurysm model: a comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations.
    Jiang J; Johnson K; Valen-Sendstad K; Mardal KA; Wieben O; Strother C
    Med Phys; 2011 Nov; 38(11):6300-12. PubMed ID: 22047395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CFD validation using in-vitro MRI velocity data - Methods for data matching and CFD error quantification.
    Wüstenhagen C; John K; Langner S; Brede M; Grundmann S; Bruschewski M
    Comput Biol Med; 2021 Apr; 131():104230. PubMed ID: 33545507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overcoming spatio-temporal limitations using dynamically scaled in vitro PC-MRI - A flow field comparison to true-scale computer simulations of idealized, stented and patient-specific left main bifurcations.
    Beier S; Ormiston J; Webster M; Cater J; Norris S; Medrano-Gracia P; Young A; Gilbert K; Cowan B
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1220-1223. PubMed ID: 28324943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic resonance fluid dynamics for intracranial aneurysms--comparison with computed fluid dynamics.
    Naito T; Miyachi S; Matsubara N; Isoda H; Izumi T; Haraguchi K; Takahashi I; Ishii K; Wakabayashi T
    Acta Neurochir (Wien); 2012 Jun; 154(6):993-1001. PubMed ID: 22392013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics--preliminary experience.
    Karmonik C; Klucznik R; Benndorf G
    Rofo; 2008 Mar; 180(3):209-15. PubMed ID: 18278729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey.
    Khani M; Xing T; Gibbs C; Oshinski JN; Stewart GR; Zeller JR; Martin BA
    J Biomech Eng; 2017 Aug; 139(8):0810051-08100512. PubMed ID: 28462417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blood flow analysis with computational fluid dynamics and 4D-flow MRI for vascular diseases.
    Kamada H; Nakamura M; Ota H; Higuchi S; Takase K
    J Cardiol; 2022 Nov; 80(5):386-396. PubMed ID: 35718672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Image-Based Flow Simulations of Pre- and Post-left Atrial Appendage Closure in the Left Atrium.
    Jia D; Jeon B; Park HB; Chang HJ; Zhang LT
    Cardiovasc Eng Technol; 2019 Jun; 10(2):225-241. PubMed ID: 30953246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluid dynamic simulation of rat brain vessels, geometrically reconstructed from MR-angiography and validated using phase contrast angiography.
    Lehmpfuhl MC; Hess A; Gaudnek MA; Sibila M
    Phys Med; 2011 Jul; 27(3):169-76. PubMed ID: 20696607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical investigation of patient-specific thoracic aortic aneurysms and comparison with normal subject via computational fluid dynamics (CFD).
    Etli M; Canbolat G; Karahan O; Koru M
    Med Biol Eng Comput; 2021 Jan; 59(1):71-84. PubMed ID: 33225424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics.
    Persak SC; Sin S; McDonough JM; Arens R; Wootton DM
    J Appl Physiol (1985); 2011 Dec; 111(6):1819-27. PubMed ID: 21852407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
    Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of contralateral circulation on computational fluid dynamics of intracranial arteries: simulated versus measured flow velocities.
    Oh S; Song Y; Lim H; Ko Y; Park S
    Eur Radiol Exp; 2023 Sep; 7(1):55. PubMed ID: 37735305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study.
    Xue Y; Hellmuth R; Shin DH
    Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.