These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38083427)
21. Fusion inception and transformer network for continuous estimation of finger kinematics from surface electromyography. Lin C; Zhang X Front Neurorobot; 2024; 18():1305605. PubMed ID: 38765870 [TBL] [Abstract][Full Text] [Related]
22. MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning. Nasr A; Bell S; He J; Whittaker RL; Jiang N; Dickerson CR; McPhee J J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352741 [No Abstract] [Full Text] [Related]
23. Continuous Estimation of Human Joint Angles From sEMG Using a Multi-Feature Temporal Convolutional Attention-Based Network. Wang S; Tang H; Gao L; Tan Q IEEE J Biomed Health Inform; 2022 Nov; 26(11):5461-5472. PubMed ID: 35969552 [TBL] [Abstract][Full Text] [Related]
24. Continuous Motion Estimation of Knee Joint Based on a Parameter Self-Updating Mechanism Model. Li J; Li K; Zhang J; Cao J Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760130 [TBL] [Abstract][Full Text] [Related]
25. Effect of velocity and acceleration in joint angle estimation for an EMG-Based upper-limb exoskeleton control. Tang Z; Yu H; Yang H; Zhang L; Zhang L Comput Biol Med; 2022 Feb; 141():105156. PubMed ID: 34942392 [TBL] [Abstract][Full Text] [Related]
26. LSTM-AE for Domain Shift Quantification in Cross-Day Upper-Limb Motion Estimation Using Surface Electromyography. Bao T; Wang C; Yang P; Xie SQ; Zhang ZQ; Zhou P IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2570-2580. PubMed ID: 37252871 [TBL] [Abstract][Full Text] [Related]
27. A novel combined model for prediction of daily precipitation data using instantaneous frequency feature and bidirectional long short time memory networks. Latifoğlu L Environ Sci Pollut Res Int; 2022 Jun; 29(28):42899-42912. PubMed ID: 35092586 [TBL] [Abstract][Full Text] [Related]
28. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks. Bian Q; Castellani M; Shepherd D; Duan J; Ding Z IEEE Trans Neural Syst Rehabil Eng; 2024; 32():822-830. PubMed ID: 38345960 [TBL] [Abstract][Full Text] [Related]
29. Lower Limb Joint Torque Prediction Using Long Short-Term Memory Network and Gaussian Process Regression. Wang M; Chen Z; Zhan H; Zhang J; Wu X; Jiang D; Guo Q Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067948 [TBL] [Abstract][Full Text] [Related]
30. A Transfer Learning based Cross-subject Generic Model for Continuous Estimation of Finger Joint Angles from a New User. Long Y; Geng Y; Dai C; Li G IEEE J Biomed Health Inform; 2023 Jan; PP():. PubMed ID: 37018609 [TBL] [Abstract][Full Text] [Related]
31. Feasibility Study of Advanced Neural Networks Applied to sEMG-Based Force Estimation. Xu L; Chen X; Cao S; Zhang X; Chen X Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257489 [TBL] [Abstract][Full Text] [Related]
32. Estimation of Lower Limb Joint Angles and Joint Moments during Different Locomotive Activities Using the Inertial Measurement Units and a Hybrid Deep Learning Model. Wang F; Liang W; Afzal HMR; Fan A; Li W; Dai X; Liu S; Hu Y; Li Z; Yang P Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005427 [TBL] [Abstract][Full Text] [Related]
33. Prediction of dissolved oxygen concentration in aquaculture based on attention mechanism and combined neural network. Yang W; Liu W; Gao Q Math Biosci Eng; 2023 Jan; 20(1):998-1017. PubMed ID: 36650799 [TBL] [Abstract][Full Text] [Related]
34. Deep learning for predicting respiratory rate from biosignals. Kumar AK; Ritam M; Han L; Guo S; Chandra R Comput Biol Med; 2022 May; 144():105338. PubMed ID: 35248805 [TBL] [Abstract][Full Text] [Related]
35. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model. Ngeo JG; Tamei T; Shibata T J Neuroeng Rehabil; 2014 Aug; 11():122. PubMed ID: 25123024 [TBL] [Abstract][Full Text] [Related]
36. Estimation of Joint Torque by EMG-Driven Neuromusculoskeletal Models and LSTM Networks. Zhang L; Soselia D; Wang R; Gutierrez-Farewik EM IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3722-3731. PubMed ID: 37708013 [TBL] [Abstract][Full Text] [Related]
37. Towards an SEMG-based tele-operated robot for masticatory rehabilitation. Kalani H; Moghimi S; Akbarzadeh A Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596 [TBL] [Abstract][Full Text] [Related]
38. Prediction of Joint Angles Based on Human Lower Limb Surface Electromyography. Zhao H; Qiu Z; Peng D; Wang F; Wang Z; Qiu S; Shi X; Chu Q Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420573 [TBL] [Abstract][Full Text] [Related]
39. Fused ultrasound and electromyography-driven neuromuscular model to improve plantarflexion moment prediction across walking speeds. Zhang Q; Fragnito N; Franz JR; Sharma N J Neuroeng Rehabil; 2022 Aug; 19(1):86. PubMed ID: 35945600 [TBL] [Abstract][Full Text] [Related]
40. Estimation of Joint Angle From sEMG and Inertial Measurements Based on Deep Learning Approach. Delgado AL; Da Rocha AF; Leon AS; Ruiz-Olaya A; Montero KR; Delis AL Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():700-703. PubMed ID: 34891388 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]