BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38083444)

  • 1. Utilization of brain scans to create realistic phosphene maps for cortical visual prosthesis simulation studies.
    Wang HZ; Wong YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel simulation paradigm utilising MRI-derived phosphene maps for cortical prosthetic vision.
    Wang HZ; Wong YT
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37531948
    [No Abstract]   [Full Text] [Related]  

  • 3. Visual cortical prosthesis: an electrical perspective.
    Pio-Lopez L; Poulkouras R; Depannemaecker D
    J Med Eng Technol; 2021 Jul; 45(5):394-407. PubMed ID: 33843427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses.
    van der Grinten M; de Ruyter van Steveninck J; Lozano A; Pijnacker L; Rueckauer B; Roelfsema P; van Gerven M; van Wezel R; Güçlü U; Güçlütürk Y
    Elife; 2024 Feb; 13():. PubMed ID: 38386406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Phosphene Synchrony in Driving Object Binding in a Simulation of Artificial Vision.
    Meital-Kfir N; Pezaris JS
    Invest Ophthalmol Vis Sci; 2023 Dec; 64(15):5. PubMed ID: 38051263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of synchronous versus asynchronous electrical stimulation in artificial vision.
    Moleirinho S; Whalen AJ; Fried SI; Pezaris JS
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33900206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurophysiological considerations for visual implants.
    Meikle SJ; Wong YT
    Brain Struct Funct; 2022 May; 227(4):1523-1543. PubMed ID: 34773502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal prosthetic vision simulation: temporal aspects.
    Avraham D; Jung JH; Yitzhaky Y; Peli E
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34359062
    [No Abstract]   [Full Text] [Related]  

  • 10. A method for plotting the optimum positions of an array of cortical electrical phosphenes.
    Everitt BS; Rushton DN
    Biometrics; 1978 Sep; 34(3):399-410. PubMed ID: 719122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans.
    Beauchamp MS; Oswalt D; Sun P; Foster BL; Magnotti JF; Niketeghad S; Pouratian N; Bosking WH; Yoshor D
    Cell; 2020 May; 181(4):774-783.e5. PubMed ID: 32413298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphene object perception employs holistic processing during early visual processing stage.
    Guo H; Yang Y; Gu G; Zhu Y; Qiu Y
    Artif Organs; 2013 Apr; 37(4):401-8. PubMed ID: 23489114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind.
    Dobelle WH; Mladejovsky MG
    J Physiol; 1974 Dec; 243(2):553-76. PubMed ID: 4449074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PVGAN: a generative adversarial network for object simplification in prosthetic vision.
    Elnabawy RH; Abdennadher S; Hellwich O; Eldawlatly S
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35981530
    [No Abstract]   [Full Text] [Related]  

  • 15. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics.
    Bosking WH; Beauchamp MS; Yoshor D
    Annu Rev Vis Sci; 2017 Sep; 3():141-166. PubMed ID: 28753382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating Phosphene Locations Using Eye Movements of Suprachoroidal Retinal Prosthesis Users.
    Titchener SA; Goossens J; Kvansakul J; Nayagam DAX; Kolic M; Baglin EK; Ayton LN; Abbott CJ; Luu CD; Barnes N; Kentler WG; Shivdasani MN; Allen PJ; Petoe MA
    Transl Vis Sci Technol; 2023 Mar; 12(3):20. PubMed ID: 36943168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Progress and Optimization of Information Processing in Artificial Visual Prostheses.
    Wang J; Zhao R; Li P; Fang Z; Li Q; Han Y; Zhou R; Zhang Y
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects.
    Oswalt D; Bosking W; Sun P; Sheth SA; Niketeghad S; Salas MA; Patel U; Greenberg R; Dorn J; Pouratian N; Beauchamp M; Yoshor D
    Brain Stimul; 2021; 14(5):1356-1372. PubMed ID: 34482000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Text image processing for visual prostheses.
    Wang S; Li Y; Barnes N
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2977-80. PubMed ID: 23366550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.