BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38083444)

  • 21. Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject.
    Niketeghad S; Muralidharan A; Patel U; Dorn JD; Bonelli L; Greenberg RJ; Pouratian N
    J Neurosurg; 2019 May; 132(6):2000-2007. PubMed ID: 31151104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eye movements and the perceived location of phosphenes generated by intracranial primary visual cortex stimulation in the blind.
    Caspi A; Barry MP; Patel UK; Salas MA; Dorn JD; Roy A; Niketeghad S; Greenberg RJ; Pouratian N
    Brain Stimul; 2021; 14(4):851-860. PubMed ID: 33991713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.
    Lewis PM; Ackland HM; Lowery AJ; Rosenfeld JV
    Brain Res; 2015 Jan; 1595():51-73. PubMed ID: 25446438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical visual prostheses: from microstimulation to functional percept.
    Najarpour Foroushani A; Pack CC; Sawan M
    J Neural Eng; 2018 Apr; 15(2):021005. PubMed ID: 29350199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Axonal stimulation affects the linear summation of single-point perception in three Argus II users.
    Hou Y; Nanduri D; Granley J; Weiland JD; Beyeler M
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38457841
    [No Abstract]   [Full Text] [Related]  

  • 26. Sensory augmentation to aid training with retinal prostheses.
    Kvansakul J; Hamilton L; Ayton LN; McCarthy C; Petoe MA
    J Neural Eng; 2020 Jul; 17(4):045001. PubMed ID: 32554868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulating prosthetic vision: I. Visual models of phosphenes.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    Vision Res; 2009 Jun; 49(12):1493-506. PubMed ID: 19504749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system.
    Cha K; Horch K; Normann RA
    Ann Biomed Eng; 1992; 20(4):439-49. PubMed ID: 1510295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Configuration-based processing of phosphene pattern recognition for simulated prosthetic vision.
    Guo H; Qin R; Qiu Y; Zhu Y; Tong S
    Artif Organs; 2010 Apr; 34(4):324-30. PubMed ID: 20420615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulating the perceptual effects of electrode-retina distance in prosthetic vision.
    Avraham D; Yitzhaky Y
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35561665
    [No Abstract]   [Full Text] [Related]  

  • 31. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of simulated phosphene size based on tactile perception.
    Lu Y; Chen P; Zhao Y; Shi J; Ren Q; Chai X
    Artif Organs; 2012 Jan; 36(1):115-20. PubMed ID: 21810114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Computational Model of Phosphene Appearance for Epiretinal Prostheses.
    Granley J; Beyeler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4477-4481. PubMed ID: 34892213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device.
    Srivastava NR; Troyk PR; Dagnelie G
    J Neural Eng; 2009 Jun; 6(3):035008. PubMed ID: 19458397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel approach for documenting phosphenes induced by transcranial magnetic stimulation.
    Elkin-Frankston S; Fried PJ; Pascual-Leone A; Rushmore RJ; Valero-Cabr A
    J Vis Exp; 2010 Apr; (38):. PubMed ID: 20360672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.
    Samaha J; Gosseries O; Postle BR
    J Neurosci; 2017 Mar; 37(11):2824-2833. PubMed ID: 28179556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inducing lateralized phosphenes over the occipital lobe using transcranial magnetic stimulation to navigate a virtual environment.
    Gebrehiwot AN; Kato T; Nakazawa K
    PLoS One; 2021; 16(4):e0249996. PubMed ID: 33852643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial resolution of local field potential signals in macaque V4.
    Foroushani AN; Neupane S; De Heredia Pastor P; Pack CC; Sawan M
    J Neural Eng; 2020 Mar; 17(2):026003. PubMed ID: 32023554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. fMRI of retina-originated phosphenes experienced by patients with Leber congenital amaurosis.
    Ashtari M; Cyckowski L; Yazdi A; Viands A; Marshall K; Bókkon I; Maguire A; Bennett J
    PLoS One; 2014; 9(1):e86068. PubMed ID: 24465873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recognition of objects in simulated irregular phosphene maps for an epiretinal prosthesis.
    Lu Y; Wang J; Wu H; Li L; Cao X; Chai X
    Artif Organs; 2014 Feb; 38(2):E10-20. PubMed ID: 24117959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.