These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38083472)
21. Modular Optoelectronic System for Wireless, Programmable Neuromodulation During Free Behavior. Orguc S; Sands J; Sahasrabudhe A; Anikeeva P; Chandrakasan AP Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4322-4325. PubMed ID: 33018952 [TBL] [Abstract][Full Text] [Related]
22. High-Performing and Capacitive-Matched Triboelectric Implants Driven by Ultrasound. Kim YJ; Lee J; Hwang JH; Chung Y; Park BJ; Kim J; Kim SH; Mun J; Yoon HJ; Park SM; Kim SW Adv Mater; 2024 Jan; 36(2):e2307194. PubMed ID: 37884338 [TBL] [Abstract][Full Text] [Related]
23. In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator. Zheng Q; Zhang H; Shi B; Xue X; Liu Z; Jin Y; Ma Y; Zou Y; Wang X; An Z; Tang W; Zhang W; Yang F; Liu Y; Lang X; Xu Z; Li Z; Wang ZL ACS Nano; 2016 Jul; 10(7):6510-8. PubMed ID: 27253430 [TBL] [Abstract][Full Text] [Related]
24. Wearable, battery-powered, wireless, programmable 8-channel neural stimulator. Farahmand S; Vahedian H; Abedinkhan Eslami M; Sodagar AM Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6120-3. PubMed ID: 23367325 [TBL] [Abstract][Full Text] [Related]
25. An Energy-Efficient Implantable-Neural-Stimulator System with Wireless Charging and Dynamic Voltage Output. Fu X; Mai S; Wang Z Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3835-3839. PubMed ID: 31946710 [TBL] [Abstract][Full Text] [Related]
27. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators. Wang C; Shi Q; Lee C Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458075 [TBL] [Abstract][Full Text] [Related]
28. Wireless Power Delivery Techniques for Miniature Implantable Bioelectronics. Singer A; Robinson JT Adv Healthc Mater; 2021 Sep; 10(17):e2100664. PubMed ID: 34114368 [TBL] [Abstract][Full Text] [Related]
29. A Miniaturized, Low-Frequency Magnetoelectric Wireless Power Transfer System for Powering Biomedical Implants. Mukherjee D; Rainu SK; Singh N; Mallick D IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):438-450. PubMed ID: 37999967 [TBL] [Abstract][Full Text] [Related]
30. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks. Miao Z; Liu D; Gong C IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1160-1170. PubMed ID: 28922125 [TBL] [Abstract][Full Text] [Related]
31. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review. Bocan KN; Sejdić E Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999154 [TBL] [Abstract][Full Text] [Related]
32. A wireless system with stimulation and recording capabilities for interfacing peripheral nerves in rodents. Schonle P; Michoud F; Brun N; Guex A; Lacour SP; Wang Q; Huang Q Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4439-4442. PubMed ID: 28269263 [TBL] [Abstract][Full Text] [Related]
33. A fully implantable pacemaker for the mouse: from battery to wireless power. Laughner JI; Marrus SB; Zellmer ER; Weinheimer CJ; MacEwan MR; Cui SX; Nerbonne JM; Efimov IR PLoS One; 2013; 8(10):e76291. PubMed ID: 24194832 [TBL] [Abstract][Full Text] [Related]
34. A Highly Miniaturized, Chronically Implanted ASIC for Electrical Nerve Stimulation. Shah J; Quinkert C; Collar B; Williams M; Biggs E; Irazoqui P IEEE Trans Biomed Circuits Syst; 2022 Apr; 16(2):233-243. PubMed ID: 35201991 [TBL] [Abstract][Full Text] [Related]
35. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. Jia Y; Mirbozorgi SA; Lee B; Khan W; Madi F; Inan OT; Weber A; Li W; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):608-618. PubMed ID: 31135371 [TBL] [Abstract][Full Text] [Related]
36. Functional regeneration of severed peripheral nerve using an implantable electrical stimulator. Lee TH; Pan H; Kim IS; Hwang SJ; Kim SJ Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1511-4. PubMed ID: 21096369 [TBL] [Abstract][Full Text] [Related]
37. Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices. Das KK; Basu B; Maiti P; Dubey AK Acta Biomater; 2023 Nov; 171():85-113. PubMed ID: 37673230 [TBL] [Abstract][Full Text] [Related]
38. An implantable wireless optogenetic stimulation system for peripheral nerve control. Kang-Il Song ; Park SE; Myoung-Soo Kim ; Chulmin Joo ; Yong-Jun Kim ; Suh JK; Dosik Hwang ; Inchan Youn Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1033-6. PubMed ID: 26736441 [TBL] [Abstract][Full Text] [Related]
39. Enabling wireless powering and telemetry for peripheral nerve implants. Jegadeesan R; Nag S; Agarwal K; Thakor NV; Guo YX IEEE J Biomed Health Inform; 2015 May; 19(3):958-70. PubMed ID: 25910261 [TBL] [Abstract][Full Text] [Related]
40. Vagus nerve stimulation using a miniaturized wirelessly powered stimulator in pigs. Habibagahi I; Omidbeigi M; Hadaya J; Lyu H; Jang J; Ardell JL; Bari AA; Babakhani A Sci Rep; 2022 May; 12(1):8184. PubMed ID: 35581302 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]