These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38083531)

  • 1. Comparison of Sub-Scalp EEG and Endovascular Stent-Electrode Array for Visual Evoked Potential Brain-Computer Interface.
    Mahoney TB; Liu PC; Grayden DB; John SE
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward non-hair-bearing brain-computer interfaces for neurocognitive lapse detection.
    Wei CS; Wang YT; Lin CT; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6638-41. PubMed ID: 26737815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dry electroencephalogram electrode for applications in steady-state visual evoked potential-based brain-computer interface systems.
    Li P; Yin C; Li M; Li H; Yang B
    Biosens Bioelectron; 2021 Sep; 187():113326. PubMed ID: 34004544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.
    Lee SM; Kim JH; Park C; Hwang JY; Hong JS; Lee KH; Lee SH
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):138-47. PubMed ID: 26390442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-speed brain-computer interface (BCI) using dry EEG electrodes.
    SpĆ¼ler M
    PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces.
    Sun Q; Zhang S; Dong G; Pei W; Gao X; Wang Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field encephalography for brain activity monitoring.
    Versek C; Frasca T; Zhou J; Chowdhury K; Sridhar S
    J Neural Eng; 2018 Aug; 15(4):046027. PubMed ID: 29749347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-efficient and Custom Electrode-holder Assembly Infrastructure for EEG Recordings.
    Lin YP; Chen TY; Chen WJ
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31581619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces.
    Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014
    [No Abstract]   [Full Text] [Related]  

  • 11. 32-channel mouse EEG: Visual evoked potentials.
    Land R; Kapche A; Ebbers L; Kral A
    J Neurosci Methods; 2019 Sep; 325():108316. PubMed ID: 31251949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel semi-dry electrodes for brain-computer interface applications.
    Wang F; Li G; Chen J; Duan Y; Zhang D
    J Neural Eng; 2016 Aug; 13(4):046021. PubMed ID: 27378253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing contact impedance, signal quality and robustness as a function of the cardinality and arrangement of fingers on dry contact EEG electrodes.
    Nathan V; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3755-8. PubMed ID: 25570808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-contact Wearable EEG Sensors for SSVEP-based Brain Computer Interface Applications.
    Soleymanpour R; Patel C; Kim I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2016-2019. PubMed ID: 30440796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards predicting ECoG-BCI performance: assessing the potential of scalp-EEG
    Fahimi Hnazaee M; Verwoert M; Freudenburg ZV; van der Salm SMA; Aarnoutse EJ; Leinders S; Van Hulle MM; Ramsey NF; Vansteensel MJ
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35931055
    [No Abstract]   [Full Text] [Related]  

  • 16. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.
    Tu Y; Huang G; Hung YS; Hu L; Hu Y; Zhang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2882-5. PubMed ID: 24110329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry and noncontact EEG sensors for mobile brain-computer interfaces.
    Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the Usability of Alternative EEG Devices to Traditional Electrode Caps for SSVEP-BCI Controlled Assistive Robots.
    Cardoso ASS; Andreasen Struijk LNS; Kaeseler RL; Jochumsen M
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Pre-Gelled EEG Electrode and Its Application in SSVEP-Based BCI.
    Pei W; Wu X; Zhang X; Zha A; Tian S; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():843-850. PubMed ID: 35324444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations.
    Park SA; Hwang HJ; Lim JH; Choi JH; Jung HK; Im CH
    Med Biol Eng Comput; 2013 May; 51(5):571-9. PubMed ID: 23325145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.