BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38083539)

  • 1. Bio-signals Collecting System for Fatigue Level Classification
    Lee Y; Lee Y; Kim D
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals.
    Chen S; Xu K; Yao X; Ge J; Li L; Zhu S; Li Z
    Comput Methods Programs Biomed; 2021 Nov; 211():106451. PubMed ID: 34644668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue Evaluation through Machine Learning and a Global Fatigue Descriptor.
    Ramos G; Vaz JR; Mendonça GV; Pezarat-Correia P; Rodrigues J; Alfaras M; Gamboa H
    J Healthc Eng; 2020; 2020():6484129. PubMed ID: 31998469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection.
    Zeng H; Zhang J; Zakaria W; Babiloni F; Gianluca B; Li X; Kong W
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying a Smartwatch to Predict Work-related Fatigue for Emergency Healthcare Professionals: Machine Learning Method.
    Liu SS; Ma CJ; Chou FY; Cheng MY; Wang CH; Tsai CL; Duh WJ; Huang CH; Lai F; Lu TC
    West J Emerg Med; 2023 Jul; 24(4):693-702. PubMed ID: 37527373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of Fatigue Phases in Healthy and Diabetic Adults Using Wearable Sensor.
    Aljihmani L; Kerdjidj O; Zhu Y; Mehta RK; Erraguntla M; Sasangohar F; Qaraqe K
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33287112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning for Detecting Multi-Level Driver Fatigue Using Physiological Signals: A Comprehensive Approach.
    Peivandi M; Ardabili SZ; Sheykhivand S; Danishvar S
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Flexible Electronics Based Cardiac Electrode for Researcher Mental Stress Detection System Using Machine Learning Models on Single Lead Electrocardiogram Signal.
    Bin Heyat MB; Akhtar F; Abbas SJ; Al-Sarem M; Alqarafi A; Stalin A; Abbasi R; Muaad AY; Lai D; Wu K
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Approach to Model Physical Fatigue during Incremental Exercise among Firefighters.
    Bustos D; Cardoso F; Rios M; Vaz M; Guedes J; Torres Costa J; Santos Baptista J; Fernandes RJ
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miner Fatigue Detection from Electroencephalogram-Based Relative Power Spectral Topography Using Convolutional Neural Network.
    Xu L; Li J; Feng D
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming fatigue assessment: Smartphone-based system with digitized motor skill tests.
    Valla E; Toose AJ; Nõmm S; Toomela A
    Int J Med Inform; 2023 Sep; 177():105152. PubMed ID: 37499442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Wearable Devices and Speech Data for Personalized Machine Learning in Early Detection of Mental Disorders: Protocol for a Participatory Research Study.
    Diaz-Ramos RE; Noriega I; Trejo LA; Stroulia E; Cao B
    JMIR Res Protoc; 2023 Nov; 12():e48210. PubMed ID: 37955959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning approach to detect changes in gait parameters following a fatiguing occupational task.
    Baghdadi A; Megahed FM; Esfahani ET; Cavuoto LA
    Ergonomics; 2018 Aug; 61(8):1116-1129. PubMed ID: 29452575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Applicability of Physiological Monitoring to Manage Physical Fatigue in Firefighters.
    Bustos D; Cardoso R; Carvalho DD; Guedes J; Vaz M; Torres Costa J; Santos Baptista J; Fernandes RJ
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield.
    Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP
    AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonintrusive Monitoring of Mental Fatigue Status Using Epidermal Electronic Systems and Machine-Learning Algorithms.
    Zeng Z; Huang Z; Leng K; Han W; Niu H; Yu Y; Ling Q; Liu J; Wu Z; Zang J
    ACS Sens; 2020 May; 5(5):1305-1313. PubMed ID: 31939287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADTIDO: Detecting the Tired Deck Officer with Fusion Feature Methods.
    Li C; Fu Y; Ouyang R; Liu Y; Hou X
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Conditional GAN for Generating Time Series Data for Stress Detection in Wearable Physiological Sensor Data.
    Ehrhart M; Resch B; Havas C; Niederseer D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.