BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 38083539)

  • 21. Identification of runner fatigue stages based on inertial sensors and deep learning.
    Chang P; Wang C; Chen Y; Wang G; Lu A
    Front Bioeng Biotechnol; 2023; 11():1302911. PubMed ID: 38047289
    [No Abstract]   [Full Text] [Related]  

  • 22. A Practical Application for Quantitative Brain Fatigue Evaluation Based on Machine Learning and Ballistocardiogram.
    Xu Y; Yang Z; Li G; Tian J; Jiang Y
    Healthcare (Basel); 2021 Oct; 9(11):. PubMed ID: 34828499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fine-grained leukocyte classification with deep residual learning for microscopic images.
    Qin F; Gao N; Peng Y; Wu Z; Shen S; Grudtsin A
    Comput Methods Programs Biomed; 2018 Aug; 162():243-252. PubMed ID: 29903491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation and interpretation of a multimodal drowsiness detection system using explainable machine learning.
    Hasan MM; Watling CN; Larue GS
    Comput Methods Programs Biomed; 2024 Jan; 243():107925. PubMed ID: 38000319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.
    Karthick PA; Ghosh DM; Ramakrishnan S
    Comput Methods Programs Biomed; 2018 Feb; 154():45-56. PubMed ID: 29249346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multi-scale and multi-domain heart sound feature-based machine learning model for ACC/AHA heart failure stage classification.
    Zheng Y; Guo X; Wang Y; Qin J; Lv F
    Physiol Meas; 2022 Jun; 43(6):. PubMed ID: 35512699
    [No Abstract]   [Full Text] [Related]  

  • 28. Heart Rate Variability-Based Subjective Physical Fatigue Assessment.
    Ni Z; Sun F; Li Y
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms.
    Fergus P; Hussain A; Al-Jumeily D; Huang DS; Bouguila N
    Biomed Eng Online; 2017 Jul; 16(1):89. PubMed ID: 28679415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using Momentary Assessment and Machine Learning to Identify Barriers to Self-management in Type 1 Diabetes: Observational Study.
    Zhang P; Fonnesbeck C; Schmidt DC; White J; Kleinberg S; Mulvaney SA
    JMIR Mhealth Uhealth; 2022 Mar; 10(3):e21959. PubMed ID: 35238791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Oxidative Stress and Inflammation in Insomnia Sleep Disorder and Cardiovascular Diseases: Herbal Antioxidants and Anti-inflammatory Coupled with Insomnia Detection using Machine Learning.
    Bin Heyat MB; Akhtar F; Sultana A; Tumrani S; Teelhawod BN; Abbasi R; Amjad Kamal M; Muaad AY; Lai D; Wu K
    Curr Pharm Des; 2022; 28(45):3618-3636. PubMed ID: 36464881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of Fatigue Using Wearable Sensors: A Pilot Study.
    Luo H; Lee PA; Clay I; Jaggi M; De Luca V
    Digit Biomark; 2020; 4(Suppl 1):59-72. PubMed ID: 33442581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification.
    Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M
    J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds.
    Jiang D; Ma Y; Wang Y
    Comput Methods Programs Biomed; 2019 Sep; 178():19-30. PubMed ID: 31416548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning Approach for Fatigue Estimation in Sit-to-Stand Exercise.
    Aguirre A; Pinto MJ; Cifuentes CA; Perdomo O; Díaz CAR; Múnera M
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wave2Vec: Vectorizing Electroencephalography Bio-Signal for Prediction of Brain Disease.
    Kim S; Kim J; Chun HW
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30111710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EEG and ECG-Based Multi-Sensor Fusion Computing for Real-Time Fatigue Driving Recognition Based on Feedback Mechanism.
    Wang L; Song F; Zhou TH; Hao J; Ryu KH
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human Locomotion Classification for Different Terrains Using Machine Learning Techniques.
    Negi S; Negi PCBS; Sharma S; Sharma N
    Crit Rev Biomed Eng; 2020; 48(4):199-209. PubMed ID: 33463957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training.
    Xie Y; Wang K; Meng J; Yue J; Meng L; Yi W; Jung TP; Xu M; Ming D
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37774694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.