BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38083581)

  • 1. A 3D Microfluidic Device with Vertical Channels toward In Vitro Reconstruction of Blood-Brain Barrier.
    Wang T; Dao L; Guo Z; Li T
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BBB-on-a-Chip: Modeling Functional Human Blood-Brain Barrier by Mimicking 3D Brain Angiogenesis Using Microfluidic Chip.
    Lee S; Chung M; Jeon NL
    Methods Mol Biol; 2022; 2492():251-263. PubMed ID: 35733049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport.
    Wevers NR; Kasi DG; Gray T; Wilschut KJ; Smith B; van Vught R; Shimizu F; Sano Y; Kanda T; Marsh G; Trietsch SJ; Vulto P; Lanz HL; Obermeier B
    Fluids Barriers CNS; 2018 Aug; 15(1):23. PubMed ID: 30165870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multiplexed Microfluidic Device to Measure Blood-Brain Barrier Disruption by Pulsed Electric Fields.
    Graybill PM; Davalos RV
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1222-1225. PubMed ID: 34891507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A survey of 3D printing technology applied to paper microfluidics.
    Fu E; Wentland L
    Lab Chip; 2021 Dec; 22(1):9-25. PubMed ID: 34897346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix.
    van Dijk CGM; Brandt MM; Poulis N; Anten J; van der Moolen M; Kramer L; Homburg EFGA; Louzao-Martinez L; Pei J; Krebber MM; van Balkom BWM; de Graaf P; Duncker DJ; Verhaar MC; Luttge R; Cheng C
    Lab Chip; 2020 May; 20(10):1827-1844. PubMed ID: 32330215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recapitulation of First Pass Metabolism Using 3D Printed Microfluidic Chip and Organoid.
    Lee BE; Kim DK; Lee H; Yoon S; Park SH; Lee S; Yoo J
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Barrier Integrity Using a Two-Layered Microfluidic Device Mimicking the Blood-Brain Barrier.
    Kadry H; Cucullo L
    Methods Mol Biol; 2024; 2711():77-88. PubMed ID: 37776450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic organoids-on-a-chip: The future of human models.
    Saorin G; Caligiuri I; Rizzolio F
    Semin Cell Dev Biol; 2023 Jul; 144():41-54. PubMed ID: 36241560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering neurovascular organoids with 3D printed microfluidic chips.
    Salmon I; Grebenyuk S; Abdel Fattah AR; Rustandi G; Pilkington T; Verfaillie C; Ranga A
    Lab Chip; 2022 Apr; 22(8):1615-1629. PubMed ID: 35333271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Brain-on-a-Chip: From Key Technology to System Integration and Application.
    Wang Z; Zhang Y; Li Z; Wang H; Li N; Deng Y
    Small; 2023 Dec; 19(52):e2304427. PubMed ID: 37653590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestinal Epithelium Tubules on a Chip.
    Kosim K; Schilt I; Lanz HL; Vulto P; Kurek D
    Methods Mol Biol; 2022; 2373():87-105. PubMed ID: 34520008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pump-less, recirculating organ-on-a-chip (rOoC) platform.
    Busek M; Aizenshtadt A; Koch T; Frank A; Delon L; Martinez MA; Golovin A; Dumas C; Stokowiec J; Gruenzner S; Melum E; Krauss S
    Lab Chip; 2023 Feb; 23(4):591-608. PubMed ID: 36655405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Disposable Passive Microfluidic Device for Cell Culturing.
    Guzzi F; Candeloro P; Coluccio ML; Cristiani CM; Parrotta EI; Scaramuzzino L; Scalise S; Dattola E; D'Attimo MA; Cuda G; Lamanna E; Passacatini LC; Carbone E; Krühne U; Fabrizio ED; Perozziello G
    Biosensors (Basel); 2020 Feb; 10(3):. PubMed ID: 32121446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Microtube-Embedded Chip to Mimic Blood-Brain Barrier Capillary Vessels.
    Sooriyaarachchi D; Maharubin S; Tan GZ
    Methods Mol Biol; 2022; 2492():241-249. PubMed ID: 35733048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit.
    Brown JA; Codreanu SG; Shi M; Sherrod SD; Markov DA; Neely MD; Britt CM; Hoilett OS; Reiserer RS; Samson PC; McCawley LJ; Webb DJ; Bowman AB; McLean JA; Wikswo JP
    J Neuroinflammation; 2016 Dec; 13(1):306. PubMed ID: 27955696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic platform integrating functional vascularized organoids-on-chip.
    Quintard C; Tubbs E; Jonsson G; Jiao J; Wang J; Werschler N; Laporte C; Pitaval A; Bah TS; Pomeranz G; Bissardon C; Kaal J; Leopoldi A; Long DA; Blandin P; Achard JL; Battail C; Hagelkruys A; Navarro F; Fouillet Y; Penninger JM; Gidrol X
    Nat Commun; 2024 Feb; 15(1):1452. PubMed ID: 38365780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation and characterization of a physiologically relevant flow waveform in a 3D microfluidic model of the blood-brain barrier.
    Bouhrira N; DeOre BJ; Galie PA
    Biotechnol Bioeng; 2021 Jul; 118(7):2411-2421. PubMed ID: 33615435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.