These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38083595)

  • 1. Nonparametric Early Stopping Detection for c-VEP-based Brain-Computer Interfaces: A Pilot Study.
    Martinez-Cagigal V; Santamaria-Vazquez E; Perez-Velasco S; Marcos-Martinez D; Moreno-Calderon S; Hornero R
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature review.
    Martínez-Cagigal V; Thielen J; Santamaría-Vázquez E; Pérez-Velasco S; Desain P; Hornero R
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34763331
    [No Abstract]   [Full Text] [Related]  

  • 3. Burst c-VEP Based BCI: Optimizing stimulus design for enhanced classification with minimal calibration data and improved user experience.
    Cabrera Castillos K; Ladouce S; Darmet L; Dehais F
    Neuroimage; 2023 Dec; 284():120446. PubMed ID: 37949256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P300-Based Asynchronous Brain Computer Interface for Environmental Control System.
    Aydin EA; Bay OF; Guler I
    IEEE J Biomed Health Inform; 2018 May; 22(3):653-663. PubMed ID: 28391211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.
    Tu Y; Hung YS; Hu L; Huang G; Hu Y; Zhang Z
    Clin Neurophysiol; 2014 Dec; 125(12):2372-83. PubMed ID: 24794514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance.
    Wei Q; Huang Y; Li M; Lu Z
    Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Potential of Brain-Computer Interface Multiplayer Video Games using c-VEPs: A Pilot Study.
    Moreno-Calderon S; Martinez-Cagigal V; Santamaria-Vazquez E; Perez-Velasco S; Marcos-Martinez D; Hornero R
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes.
    Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 120-target brain-computer interface based on code-modulated visual evoked potentials.
    Sun Q; Zheng L; Pei W; Gao X; Wang Y
    J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of code-modulated visual evoked potentials using adaptive modified covariance beamformer and EEG signals.
    Zarei A; Mohammadzadeh Asl B
    Comput Methods Programs Biomed; 2022 Jun; 221():106859. PubMed ID: 35569239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementing a calibration-free SSVEP-based BCI system with 160 targets.
    Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091
    [No Abstract]   [Full Text] [Related]  

  • 13. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riemannian geometry-based transfer learning for reducing training time in c-VEP BCIs.
    Ying J; Wei Q; Zhou X
    Sci Rep; 2022 Jun; 12(1):9818. PubMed ID: 35701505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.
    Thielen J; Marsman P; Farquhar J; Desain P
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182
    [No Abstract]   [Full Text] [Related]  

  • 16. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    Spüler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A BCI using VEP for continuous control of a mobile robot.
    Kapeller C; Hintermuller C; Abu-Alqumsan M; Pruckl R; Peer A; Guger C
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5254-7. PubMed ID: 24110921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining brain-computer interfaces and multiplayer video games: an application based on c-VEPs.
    Moreno-Calderón S; Martínez-Cagigal V; Santamaría-Vázquez E; Pérez-Velasco S; Marcos-Martínez D; Hornero R
    Front Hum Neurosci; 2023; 17():1227727. PubMed ID: 37600556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A brain computer interface for robust wheelchair control application based on pseudorandom code modulated Visual Evoked Potential.
    Mohebbi A; Engelsholm SK; Puthusserypady S; Kjaer TW; Thomsen CE; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():602-5. PubMed ID: 26736334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.