These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38083615)

  • 1. Transfer Learning with CNN Models for Brain-Machine Interfaces to command lower-limb exoskeletons: A Solution for Limited Data
    Ferrero L; Quiles V; Soriano-Segura P; Ortiz M; Ianez E; Contreras-Vidal JL; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification and Transfer Learning of EEG during a Kinesthetic Motor Imagery Task using Deep Convolutional Neural Networks.
    Craik A; Kilicarslan A; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3046-3049. PubMed ID: 31946530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface.
    Mattioli F; Porcaro C; Baldassarre G
    J Neural Eng; 2022 Jan; 18(6):. PubMed ID: 34920443
    [No Abstract]   [Full Text] [Related]  

  • 6. Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network.
    Zhang K; Robinson N; Lee SW; Guan C
    Neural Netw; 2021 Apr; 136():1-10. PubMed ID: 33401114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding Brain Signals to Classify Gait Direction Anticipation.
    Vaghei Y; Park EJ; Arzanpour S
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():309-312. PubMed ID: 36086221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task.
    Lashgari E; Ott J; Connelly A; Baldi P; Maoz U
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352734
    [No Abstract]   [Full Text] [Related]  

  • 10. Motor Imagery EEG Classification Using Capsule Networks.
    Ha KW; Jeong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Error Potentials generated by a lower limb exoskeleton feedback in a BMI for gait control
    Soriano-Segura P; Ferrero L; Ortiz M; Ianez E; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Hyperparameter Optimization in Machine and Deep Learning Methods for Decoding Imagined Speech EEG.
    Cooney C; Korik A; Folli R; Coyle D
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding neural activity preceding balance loss during standing with a lower-limb exoskeleton using an interpretable deep learning model.
    Sujatha Ravindran A; Malaya CA; John I; Francisco GE; Layne C; Contreras-Vidal JL
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35508113
    [No Abstract]   [Full Text] [Related]  

  • 14. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control.
    Tang Z; Sun S; Zhang S; Chen Y; Li C; Chen S
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing a Motor Imagery-Based Real-Time Asynchronous Hybrid BCI Controller for a Lower-Limb Exoskeleton.
    Choi J; Kim KT; Jeong JH; Kim L; Lee SJ; Kim H
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor Imagery Classification Using Inter-Task Transfer Learning via a Channel-Wise Variational Autoencoder-Based Convolutional Neural Network.
    Lee DY; Jeong JH; Lee BH; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():226-237. PubMed ID: 35041605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving EEG-Based Motor Imagery Classification via Spatial and Temporal Recurrent Neural Networks.
    Ma X; Qiu S; Du C; Xing J; He H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1903-1906. PubMed ID: 30440769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions.
    Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL
    J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network.
    Miao M; Hu W; Yin H; Zhang K
    Comput Math Methods Med; 2020; 2020():1981728. PubMed ID: 32765639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor Imagery Analysis from Extensive EEG Data Representations Using Convolutional Neural Networks.
    Lomelin-Ibarra VA; Gutierrez-Rodriguez AE; Cantoral-Ceballos JA
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.