These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38083718)

  • 1. Using Determinant Point Process in Generative Adversarial Networks for SSVEP Signals Synthesis.
    Wang J; Wang L; Han J; Mu W; Wang P; Zhang X; Zhan G; Zhang L; Gan Z; Kang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transformer-based deep neural network model for SSVEP classification.
    Chen J; Zhang Y; Pan Y; Xu P; Guan C
    Neural Netw; 2023 Jul; 164():521-534. PubMed ID: 37209444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-day and multi-band dataset for a steady-state visual-evoked potential-based brain-computer interface.
    Choi GY; Han CH; Jung YJ; Hwang HJ
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31765472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on dynamic model of steady-state visual evoked potentials.
    Zhang S; Han X; Chen X; Wang Y; Gao S; Gao X
    J Neural Eng; 2018 Aug; 15(4):046010. PubMed ID: 29616978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision.
    Zhao X; Wang Z; Zhang M; Hu H
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33784640
    [No Abstract]   [Full Text] [Related]  

  • 8. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved cross-subject spatial filter transfer method for SSVEP-based BCI.
    Yan W; Wu Y; Du C; Xu G
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35850094
    [No Abstract]   [Full Text] [Related]  

  • 10. Bidirectional Siamese correlation analysis method for enhancing the detection of SSVEPs.
    Zhang X; Qiu S; Zhang Y; Wang K; Wang Y; He H
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35853437
    [No Abstract]   [Full Text] [Related]  

  • 11. Steady-State Visual Evoked Potential-Based Brain-Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern.
    Siribunyaphat N; Punsawad Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TRCA-Net: using TRCA filters to boost the SSVEP classification with convolutional neural network.
    Deng Y; Sun Q; Wang C; Wang Y; Zhou SK
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37399806
    [No Abstract]   [Full Text] [Related]  

  • 13. Prediction of SSVEP-based BCI performance by the resting-state EEG network.
    Zhang Y; Xu P; Guo D; Yao D
    J Neural Eng; 2013 Dec; 10(6):066017. PubMed ID: 24280591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces.
    Cao T; Wan F; Wong CM; da Cruz JN; Hu Y
    Biomed Eng Online; 2014 Mar; 13(1):28. PubMed ID: 24621009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dataset Evaluation Method and Application for Performance Testing of SSVEP-BCI Decoding Algorithm.
    Liang L; Zhang Q; Zhou J; Li W; Gao X
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.
    Hwang HJ; Han CH; Lim JH; Kim YW; Choi SI; An KO; Lee JH; Cha HS; Hyun Kim S; Im CH
    Psychophysiology; 2017 Mar; 54(3):444-451. PubMed ID: 27914171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing SSVEP-Based Brain-Computer Interface with Two-Step Task-Related Component Analysis.
    Lee HK; Choi YS
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training the spatially-coded SSVEP BCI on the fly.
    Maÿe A; Mutz M; Engel AK
    J Neurosci Methods; 2022 Aug; 378():109652. PubMed ID: 35716819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials.
    Xiao X; Xu L; Yue J; Pan B; Xu M; Ming D
    J Neural Eng; 2022 Nov; 19(5):. PubMed ID: 36206723
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of the presentation order of stimulations in sequential ERP/SSVEP Hybrid Brain-Computer Interface.
    Bekhelifi O; Berrached NE; Bendahmane A
    Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38430561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.