These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38083763)

  • 1. Age-related adaptation of the body's kinematic responses to unpredictable trip perturbations induced by a split-belt treadmill
    Yoo D; Lee C; Ahn J; Lee BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Body's Compensatory Responses to Unpredictable Trip and Slip Perturbations Induced by a Programmable Split-Belt Treadmill.
    Lee BC; Kim CS; Seo KH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1389-1396. PubMed ID: 31180863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging Affects Lower Limb Joint Moments and Muscle Responses to a Split-Belt Treadmill Perturbation.
    Yoo D; An J; Seo KH; Lee BC
    Front Sports Act Living; 2021; 3():683039. PubMed ID: 34350396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Vibrotactile Cuing on Recovery Strategies From a Treadmill-Induced Trip.
    Lee BC; Martin BJ; Thrasher TA; Layne CS
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):235-243. PubMed ID: 28333619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of reactive balance adaptation from stance-slip perturbation to stance-trip perturbation in chronic stroke survivors.
    Dusane S; Wang E; Bhatt T
    Restor Neurol Neurosci; 2019; 37(5):469-482. PubMed ID: 31561399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single session of trip-specific training modifies trunk control following treadmill induced balance perturbations in stroke survivors.
    Nevisipour M; Grabiner MD; Honeycutt CF
    Gait Posture; 2019 May; 70():222-228. PubMed ID: 30904789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new fall-inducing technology platform: Development and assessment of a programmable split-belt treadmill.
    Beom-Chan Lee ; Martin BJ; Thrasher TA; Layne CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3777-3780. PubMed ID: 29060720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for evoking a trip-like response using a treadmill-based perturbation during locomotion.
    Sessoms PH; Wyatt M; Grabiner M; Collins JD; Kingsbury T; Thesing N; Kaufman K
    J Biomech; 2014 Jan; 47(1):277-80. PubMed ID: 24268756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Description, reliability and utility of a ground-reaction-force triggered protocol for precise delivery of unilateral trip-like perturbations during gait.
    Shih HT; Gregor R; Lee SP
    PLoS One; 2023; 18(4):e0284384. PubMed ID: 37098086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Older adults demonstrate interlimb transfer of reactive gait adaptations to repeated unpredictable gait perturbations.
    McCrum C; Karamanidis K; Grevendonk L; Zijlstra W; Meijer K
    Geroscience; 2020 Feb; 42(1):39-49. PubMed ID: 31776885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pilot study of reactive balance training using trips and slips with increasing unpredictability in young and older adults: Biomechanical mechanisms, falls and clinical feasibility.
    Okubo Y; Brodie MA; Sturnieks DL; Hicks C; Lord SR
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():171-179. PubMed ID: 31153101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-Specific Perturbation Training Improves the Recovery Stepping Responses by Women With Knee Osteoarthritis Following Laboratory-Induced Trips.
    Foucher KC; Pater ML; Grabiner MD
    J Orthop Res; 2020 Mar; 38(3):663-669. PubMed ID: 31691346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention and generalizability of balance recovery response adaptations from trip perturbations across the adult life span.
    König M; Epro G; Seeley J; Potthast W; Karamanidis K
    J Neurophysiol; 2019 Nov; 122(5):1884-1893. PubMed ID: 31509470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speeding up: Discrete mediolateral perturbations increased self-paced walking speed in young and older adults.
    Castano CR; Lee LD; Huang HJ
    Gait Posture; 2023 May; 102():198-204. PubMed ID: 37043989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in motor response to stability perturbations limit fall-resisting skill transfer.
    Werth J; Epro G; König M; Santuz A; Seeley J; Arampatzis A; Karamanidis K
    Sci Rep; 2022 Dec; 12(1):21901. PubMed ID: 36535994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbation-Based Balance Training Using Repeated Trips on a Walkway vs. Belt Accelerations on a Treadmill: A Cross-Over Randomised Controlled Trial in Community-Dwelling Older Adults.
    Song PYH; Sturnieks DL; Davis MK; Lord SR; Okubo Y
    Front Sports Act Living; 2021; 3():702320. PubMed ID: 34490425
    [No Abstract]   [Full Text] [Related]  

  • 20. Aging effects on leg joint variability during walking with balance perturbations.
    Qiao M; Feld JA; Franz JR
    Gait Posture; 2018 May; 62():27-33. PubMed ID: 29510323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.