These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38083782)

  • 1. Abnormal Respiratory Sound Identification Using Audio-Spectrogram Vision Transformer.
    Ariyanti W; Liu KC; Chen KY; Yu-Tsao
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Adventitious Sounds Combining Cochleogram and Vision Transformers.
    Mang LD; González Martínez FD; Martinez Muñoz D; García Galán S; Cortina R
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of the spectrogram, scalogram, melspectrogram and gammatonegram time-frequency representations for the classification of lung sounds using the ICBHI database based on CNNs.
    Neili Z; Sundaraj K
    Biomed Tech (Berl); 2022 Oct; 67(5):367-390. PubMed ID: 35926850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convolutional neural networks based efficient approach for classification of lung diseases.
    Demir F; Sengur A; Bajaj V
    Health Inf Sci Syst; 2020 Dec; 8(1):4. PubMed ID: 31915523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LungAttn: advanced lung sound classification using attention mechanism with dual TQWT and triple STFT spectrogram.
    Li J; Yuan J; Wang H; Liu S; Guo Q; Ma Y; Li Y; Zhao L; Wang G
    Physiol Meas; 2021 Oct; 42(10):. PubMed ID: 34534977
    [No Abstract]   [Full Text] [Related]  

  • 6. Automated Lung Sound Classification Using a Hybrid CNN-LSTM Network and Focal Loss Function.
    Petmezas G; Cheimariotis GA; Stefanopoulos L; Rocha B; Paiva RP; Katsaggelos AK; Maglaveras N
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COVID-19 Detection From Respiratory Sounds With Hierarchical Spectrogram Transformers.
    Aytekin I; Dalmaz O; Gonc K; Ankishan H; Saritas EU; Bagci U; Celik H; Cukur T
    IEEE J Biomed Health Inform; 2024 Mar; 28(3):1273-1284. PubMed ID: 38051612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crackle and wheeze detection in lung sound signals using convolutional neural networks.
    Faustino P; Oliveira J; Coimbra M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():345-348. PubMed ID: 34891306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of lung sounds using scalogram representation of sound segments and convolutional neural network.
    Pham Thi Viet H; Nguyen Thi Ngoc H; Tran Anh V; Hoang Quang H
    J Med Eng Technol; 2022 May; 46(4):270-279. PubMed ID: 35212591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inception-Based Network and Multi-Spectrogram Ensemble Applied To Predict Respiratory Anomalies and Lung Diseases.
    Pham L; Phan H; Schindler A; King R; Mertins A; McLoughlin I
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():253-256. PubMed ID: 34891284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring and analysis of lung sounds remotely.
    Sahgal N
    Int J Chron Obstruct Pulmon Dis; 2011; 6():407-12. PubMed ID: 21857780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based lung sound analysis for intelligent stethoscope.
    Huang DM; Huang J; Qiao K; Zhong NS; Lu HZ; Wang WJ
    Mil Med Res; 2023 Sep; 10(1):44. PubMed ID: 37749643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis.
    Gurung A; Scrafford CG; Tielsch JM; Levine OS; Checkley W
    Respir Med; 2011 Sep; 105(9):1396-403. PubMed ID: 21676606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Low-Cost AI-Empowered Stethoscope and a Lightweight Model for Detecting Cardiac and Respiratory Diseases from Lung and Heart Auscultation Sounds.
    Zhang M; Li M; Guo L; Liu J
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data augmentation using Variational Autoencoders for improvement of respiratory disease classification.
    Saldanha J; Chakraborty S; Patil S; Kotecha K; Kumar S; Nayyar A
    PLoS One; 2022; 17(8):e0266467. PubMed ID: 35960763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital respirosonography. New images of lung sounds.
    Pasterkamp H; Carson C; Daien D; Oh Y
    Chest; 1989 Dec; 96(6):1405-12. PubMed ID: 2684558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital Pulmonology Practice with Phonopulmography Leveraging Artificial Intelligence: Future Perspectives Using Dual Microwave Acoustic Sensing and Imaging.
    Sethi AK; Muddaloor P; Anvekar P; Agarwal J; Mohan A; Singh M; Gopalakrishnan K; Yadav A; Adhikari A; Damani D; Kulkarni K; Aakre CA; Ryu AJ; Iyer VN; Arunachalam SP
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature-Based Fusion Using CNN for Lung and Heart Sound Classification.
    Tariq Z; Shah SK; Lee Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The detection of crackles based on mathematical morphology in spectrogram analysis.
    Zhang K; Wang X; Han F; Zhao H
    Technol Health Care; 2015; 23 Suppl 2():S489-94. PubMed ID: 26410516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time counting of wheezing events from lung sounds using deep learning algorithms: Implications for disease prediction and early intervention.
    Im S; Kim T; Min C; Kang S; Roh Y; Kim C; Kim M; Kim SH; Shim K; Koh JS; Han S; Lee J; Kim D; Kang D; Seo S
    PLoS One; 2023; 18(11):e0294447. PubMed ID: 37983213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.