These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38084046)

  • 1. Enhancing Opioid Bioactivity Predictions through Integration of Ligand-Based and Structure-Based Drug Discovery Strategies with Transfer and Deep Learning Techniques.
    Provasi D; Filizola M
    J Phys Chem B; 2023 Dec; 127(50):10691-10699. PubMed ID: 38084046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Opioid Bioactivity Predictions through Integration of Ligand-Based and Structure-Based Drug Discovery Strategies with Transfer and Deep Learning Techniques.
    Provasi D; Filizola M
    bioRxiv; 2023 Aug; ():. PubMed ID: 37609329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Based Drug Discovery with Deep Learning.
    Özçelik R; van Tilborg D; Jiménez-Luna J; Grisoni F
    Chembiochem; 2023 Jul; 24(13):e202200776. PubMed ID: 37014633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition.
    Raschka S; Kaufman B
    Methods; 2020 Aug; 180():89-110. PubMed ID: 32645448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases.
    Rifaioglu AS; Atas H; Martin MJ; Cetin-Atalay R; Atalay V; Doğan T
    Brief Bioinform; 2019 Sep; 20(5):1878-1912. PubMed ID: 30084866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery.
    Sato K; Hamada M
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37232359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning approaches and their applications in drug discovery and design.
    Priya S; Tripathi G; Singh DB; Jain P; Kumar A
    Chem Biol Drug Des; 2022 Jul; 100(1):136-153. PubMed ID: 35426249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent trends in artificial intelligence-driven identification and development of anti-neurodegenerative therapeutic agents.
    Kashyap K; Siddiqi MI
    Mol Divers; 2021 Aug; 25(3):1517-1539. PubMed ID: 34282519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GraphEGFR: Multi-task and transfer learning based on molecular graph attention mechanism and fingerprints improving inhibitor bioactivity prediction for EGFR family proteins on data scarcity.
    Boonyarit B; Yamprasert N; Kaewnuratchadasorn P; Kinchagawat J; Prommin C; Rungrotmongkol T; Nutanong S
    J Comput Chem; 2024 Sep; 45(23):2001-2023. PubMed ID: 38713612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review on Deep Learning-driven Drug Discovery: Strategies, Tools and Applications.
    Sumathi S; Suganya K; Swathi K; Sudha B; Poornima A; Varghese CA; Aswathy R
    Curr Pharm Des; 2023 May; 29(13):1013-1025. PubMed ID: 37055908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest.
    Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Systematic Review of Deep Learning Methodologies Used in the Drug Discovery Process with Emphasis on In Vivo Validation.
    Koutroumpa NM; Papavasileiou KD; Papadiamantis AG; Melagraki G; Afantitis A
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach.
    Sugaya N
    J Chem Inf Model; 2013 Oct; 53(10):2525-37. PubMed ID: 24020509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Molecular Property Prediction through Task-Oriented Transfer Learning: Integrating Universal Structural Insights and Domain-Specific Knowledge.
    Duan Y; Yang X; Zeng X; Wang W; Deng Y; Cao D
    J Med Chem; 2024 Jun; 67(11):9575-9586. PubMed ID: 38748846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-learning methods for ligand-protein molecular docking.
    Crampon K; Giorkallos A; Deldossi M; Baud S; Steffenel LA
    Drug Discov Today; 2022 Jan; 27(1):151-164. PubMed ID: 34560276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning and virtual drug screening.
    Carpenter KA; Cohen DS; Jarrell JT; Huang X
    Future Med Chem; 2018 Nov; 10(21):2557-2567. PubMed ID: 30288997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of neural networks for drug discovery and the inputs used.
    Xu Y; Yao H; Lin K
    Expert Opin Drug Discov; 2018 Dec; 13(12):1091-1102. PubMed ID: 30449189
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.