These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38084668)

  • 1. Fluoranthene biotreatment using prominent freshwater microalgae: physiological responses of microalgae and artificial neural network modeling of the bioremoval process.
    Torbati S; Atashbar Kangarloei B; Asalpisheh Z
    Int J Phytoremediation; 2024 May; 26(7):1038-1048. PubMed ID: 38084668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons: Strategies, advancement and regulations.
    Satpati GG; Gupta S; Biswas RK; Choudhury AK; Kim JW; Davoodbasha M
    Chemosphere; 2023 Dec; 344():140337. PubMed ID: 37797901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem.
    Hong YW; Yuan DX; Lin QM; Yang TL
    Mar Pollut Bull; 2008 Aug; 56(8):1400-5. PubMed ID: 18597790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of polycyclic aromatic hydrocarbons on marine and freshwater microalgae - A review.
    Ben Othman H; Pick FR; Sakka Hlaili A; Leboulanger C
    J Hazard Mater; 2023 Jan; 441():129869. PubMed ID: 36063709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate.
    Xiong JQ; Kurade MB; Abou-Shanab RA; Ji MK; Choi J; Kim JO; Jeon BH
    Bioresour Technol; 2016 Apr; 205():183-90. PubMed ID: 26826958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring dihydrodiol polyaromatic hydrocarbon metabolites produced by the freshwater microalgae Selenastrum capricornutum.
    Hernández Blanco FJ; García de Llasera MP
    Chemosphere; 2016 Sep; 158():80-90. PubMed ID: 27258898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxic effects of polystyrene nanoplastics and polycyclic aromatic hydrocarbons (chrysene and fluoranthene) on the growth and physiological characteristics of Chlamydomonas reinhardtii.
    Narayanan G; Talib M; Singh N; Darbha GK
    Aquat Toxicol; 2024 Mar; 268():106838. PubMed ID: 38295601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicological risks of Acid Bordeaux B on duckweed and the plant potential for effective remediation of dye-polluted waters.
    Torbati S
    Environ Sci Pollut Res Int; 2019 Sep; 26(27):27699-27711. PubMed ID: 31338759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pyrene and fluoranthene on the degradation characteristics of phenanthrene in the cometabolism process by Sphingomonas sp. strain PheB4 isolated from mangrove sediments.
    Zhong Y; Zou S; Lin L; Luan T; Qiu R; Tam NF
    Mar Pollut Bull; 2010 Nov; 60(11):2043-9. PubMed ID: 20708757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish embryo bioassays for a comprehensive evaluation of microalgae efficiency in the removal of diclofenac from water.
    Escapa C; Torres T; Neuparth T; Coimbra RN; García AI; Santos MM; Otero M
    Sci Total Environ; 2018 Nov; 640-641():1024-1033. PubMed ID: 30021269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum chemical calculation to elucidate the biodegradation pathway of methylphenanthrene by green microalgae.
    Luo L; Xiao Z; Zhou X; Yang L; Luo S; Zhao C; Luan T
    Water Res; 2020 Apr; 173():115598. PubMed ID: 32062219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation potential of duckweed (Lemna minor L.) in degradation of C.I. Acid Blue 92: artificial neural network modeling.
    Khataee AR; Movafeghi A; Torbati S; Salehi Lisar SY; Zarei M
    Ecotoxicol Environ Saf; 2012 Jun; 80():291-8. PubMed ID: 22498423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation potential of polycyclic aromatic hydrocarbons by immobilized Klebsiella sp. in soil washing effluent.
    Xu X; Zhou H; Chen X; Wang B; Jin Z; Ji F
    Chemosphere; 2019 May; 223():140-147. PubMed ID: 30772593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of benzophenone-3 and its biodegradation in a freshwater microalga Scenedesmus obliquus.
    Lee SH; Xiong JQ; Ru S; Patil SM; Kurade MB; Govindwar SP; Oh SE; Jeon BH
    J Hazard Mater; 2020 May; 389():122149. PubMed ID: 32004845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on the enzymes and metabolites identified by mass spectrometry from bacteria and microalgae involved in the degradation of high molecular weight PAHs.
    Méndez García M; García de Llasera MP
    Sci Total Environ; 2021 Nov; 797():149035. PubMed ID: 34303250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency, mechanism, influencing factors, and integrated technology of biodegradation for aromatic compounds by microalgae: A review.
    Li H; Meng F
    Environ Pollut; 2023 Oct; 335():122248. PubMed ID: 37490964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the productivity and bioremediation potential of two tropical marine algae in petroleum hydrocarbon polluted tropical marine water.
    Ezenweani RS; Kadiri MO
    Int J Phytoremediation; 2024 May; 26(7):1099-1116. PubMed ID: 38093707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bioremediation of the typical persistent organic pollutants (POPs) by microalgae-bacteria consortia: A systematic review.
    Guo W; Ren H; Jin Y; Chai Z; Liu B
    Chemosphere; 2024 May; 355():141852. PubMed ID: 38556179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum.
    Ke L; Luo L; Wang P; Luan T; Tam NF
    Bioresour Technol; 2010 Sep; 101(18):6961-72. PubMed ID: 20435470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal and metabolism of triclosan by three different microalgal species in aquatic environment.
    Wang S; Poon K; Cai Z
    J Hazard Mater; 2018 Jan; 342():643-650. PubMed ID: 28898861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.