These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38084888)

  • 21. SCOP: a novel scaffolding algorithm based on contig classification and optimization.
    Li M; Tang L; Wu FX; Pan Y; Wang J
    Bioinformatics; 2019 Apr; 35(7):1142-1150. PubMed ID: 30184046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SAGE: String-overlap Assembly of GEnomes.
    Ilie L; Haider B; Molnar M; Solis-Oba R
    BMC Bioinformatics; 2014 Sep; 15(1):302. PubMed ID: 25225118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes.
    De Maio N; Shaw LP; Hubbard A; George S; Sanderson ND; Swann J; Wick R; AbuOun M; Stubberfield E; Hoosdally SJ; Crook DW; Peto TEA; Sheppard AE; Bailey MJ; Read DS; Anjum MF; Walker AS; Stoesser N; On Behalf Of The Rehab Consortium
    Microb Genom; 2019 Sep; 5(9):. PubMed ID: 31483244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AlignGraph: algorithm for secondary de novo genome assembly guided by closely related references.
    Bao E; Jiang T; Girke T
    Bioinformatics; 2014 Jun; 30(12):i319-i328. PubMed ID: 24932000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput genome scaffolding from in vivo DNA interaction frequency.
    Kaplan N; Dekker J
    Nat Biotechnol; 2013 Dec; 31(12):1143-7. PubMed ID: 24270850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exact approaches for scaffolding.
    Weller M; Chateau A; Giroudeau R
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S2. PubMed ID: 26451725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GenAPI: a tool for gene absence-presence identification in fragmented bacterial genome sequences.
    Gabrielaite M; Marvig RL
    BMC Bioinformatics; 2020 Jul; 21(1):320. PubMed ID: 32690023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph.
    Cheng H; Asri M; Lucas J; Koren S; Li H
    Nat Methods; 2024 Jun; 21(6):967-970. PubMed ID: 38730258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SLHSD: hybrid scaffolding method based on short and long reads.
    Luo J; Guan T; Chen G; Yu Z; Zhai H; Yan C; Luo H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37141142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the DNBSEQ platform and Illumina HiSeq 2000 for bacterial genome assembly.
    Hu T; Chen J; Lin X; He W; Liang H; Wang M; Li W; Wu Z; Han M; Jin X; Kristiansen K; Xiao L; Zou Y
    Sci Rep; 2024 Jan; 14(1):1292. PubMed ID: 38221534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SLR: a scaffolding algorithm based on long reads and contig classification.
    Luo J; Lyu M; Chen R; Zhang X; Luo H; Yan C
    BMC Bioinformatics; 2019 Oct; 20(1):539. PubMed ID: 31666010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CSAR: a contig scaffolding tool using algebraic rearrangements.
    Chen KT; Liu CL; Huang SH; Shen HT; Shieh YK; Chiu HT; Lu CL
    Bioinformatics; 2018 Jan; 34(1):109-111. PubMed ID: 28968788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using Nanopore Sequencing to Obtain Complete Bacterial Genomes from Saliva Samples.
    Baker JL
    mSystems; 2022 Oct; 7(5):e0049122. PubMed ID: 35993719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous compression of multiple error-corrected short-read sets for faster data transmission and better de novo assemblies.
    Tang T; Hutvagner G; Wang W; Li J
    Brief Funct Genomics; 2022 Sep; 21(5):387-398. PubMed ID: 35848773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hybrid and scalable error correction algorithm for indel and substitution errors of long reads.
    Das AK; Goswami S; Lee K; Park SJ
    BMC Genomics; 2019 Dec; 20(Suppl 11):948. PubMed ID: 31856721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying wrong assemblies in de novo short read primary sequence assembly contigs.
    Chawla V; Kumar R; Shankar R
    J Biosci; 2016 Sep; 41(3):455-74. PubMed ID: 27581937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.