BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38084914)

  • 1. Ab Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule Systems.
    Schnappinger T; Kowalewski M
    J Chem Theory Comput; 2023 Dec; 19(24):9278-9289. PubMed ID: 38084914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavity Born-Oppenheimer Hartree-Fock Ansatz: Light-Matter Properties of Strongly Coupled Molecular Ensembles.
    Schnappinger T; Sidler D; Ruggenthaler M; Rubio A; Kowalewski M
    J Phys Chem Lett; 2023 Sep; 14(36):8024-8033. PubMed ID: 37651603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Quantum Chemistry Approach to Linear Vibro-Polaritonic Infrared Spectra with Perturbative Electron-Photon Correlation.
    Fischer EW; Syska JA; Saalfrank P
    J Phys Chem Lett; 2024 Feb; 15(8):2262-2269. PubMed ID: 38381036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond Cavity Born-Oppenheimer: On Nonadiabatic Coupling and Effective Ground State Hamiltonians in Vibro-Polaritonic Chemistry.
    Fischer EW; Saalfrank P
    J Chem Theory Comput; 2023 Oct; 19(20):7215-7229. PubMed ID: 37793029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities.
    Fischer EW; Saalfrank P
    J Chem Phys; 2021 Mar; 154(10):104311. PubMed ID: 33722029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab Initio Linear-Response Approach to Vibro-Polaritons in the Cavity Born-Oppenheimer Approximation.
    Bonini J; Flick J
    J Chem Theory Comput; 2022 May; 18(5):2764-2773. PubMed ID: 35404591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Nature of Vibro-Polaritonic States in Water and Heavy Water.
    Kadyan A; Suresh MP; Johns B; George J
    Chemphyschem; 2024 Feb; 25(4):e202300560. PubMed ID: 38117002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity Control of Molecular Spectroscopy and Photophysics.
    Gu B; Gu Y; Chernyak VY; Mukamel S
    Acc Chem Res; 2023 Oct; 56(20):2753-2762. PubMed ID: 37782841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiclassical Real-Time Nuclear-Electronic Orbital Dynamics for Molecular Polaritons: Unified Theory of Electronic and Vibrational Strong Couplings.
    Li TE; Tao Z; Hammes-Schiffer S
    J Chem Theory Comput; 2022 May; 18(5):2774-2784. PubMed ID: 35420037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating Molecular Exciton Polaritons Using
    Weight BM; Krauss TD; Huo P
    J Phys Chem Lett; 2023 Jun; 14(25):5901-5913. PubMed ID: 37343178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory.
    Vu N; Mejia-Rodriguez D; Bauman NP; Panyala A; Mutlu E; Govind N; Foley JJ
    J Chem Theory Comput; 2024 Feb; 20(3):1214-1227. PubMed ID: 38291561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning.
    Rana B; Hohenstein EG; Martínez TJ
    J Phys Chem A; 2024 Jan; 128(1):139-151. PubMed ID: 38110364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidimensional Quantum Dynamical Simulation of Infrared Spectra under Polaritonic Vibrational Strong Coupling.
    Yu Q; Hammes-Schiffer S
    J Phys Chem Lett; 2022 Dec; 13(48):11253-11261. PubMed ID: 36448842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully Quantum Simulation of Polaritonic Vibrational Spectra of Large Cavity-Molecule System.
    Yu Q; Bowman JM
    J Chem Theory Comput; 2024 May; 20(10):4278-4287. PubMed ID: 38717309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry.
    Flick J; Narang P
    J Chem Phys; 2020 Sep; 153(9):094116. PubMed ID: 32891103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiclassical Truncated-Wigner-Approximation Theory of Molecular Vibration-Polariton Dynamics in Optical Cavities.
    Phuc NT
    J Chem Theory Comput; 2024 Apr; 20(8):3019-3027. PubMed ID: 38608260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Vibrations that Control Non-adiabatic Relaxation of Polaritons in Strongly Coupled Molecule-Cavity Systems.
    Tichauer RH; Morozov D; Sokolovskii I; Toppari JJ; Groenhof G
    J Phys Chem Lett; 2022 Jul; 13(27):6259-6267. PubMed ID: 35771724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations.
    Groenhof G; Climent C; Feist J; Morozov D; Toppari JJ
    J Phys Chem Lett; 2019 Sep; 10(18):5476-5483. PubMed ID: 31453696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions.
    Zhang Y; Nelson T; Tretiak S
    J Chem Phys; 2019 Oct; 151(15):154109. PubMed ID: 31640366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavity-induced non-adiabatic dynamics and spectroscopy of molecular rovibrational polaritons studied by multi-mode quantum models.
    Fischer EW; Saalfrank P
    J Chem Phys; 2022 Jul; 157(3):034305. PubMed ID: 35868933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.