BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38084917)

  • 1. Integration of Yeast Episomal/Integrative Plasmid Causes Genotypic and Phenotypic Diversity and Improved Sesquiterpene Production in Metabolically Engineered
    Peng B; Weintraub SJ; Lu Z; Evans S; Shen Q; McDonnell L; Plan M; Collier T; Cheah LC; Ji L; Howard CB; Anderson W; Trau M; Dumsday G; Bredeweg EL; Young EM; Speight R; Vickers CE
    ACS Synth Biol; 2024 Jan; 13(1):141-156. PubMed ID: 38084917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High production of valencene in Saccharomyces cerevisiae through metabolic engineering.
    Chen H; Zhu C; Zhu M; Xiong J; Ma H; Zhuo M; Li S
    Microb Cell Fact; 2019 Nov; 18(1):195. PubMed ID: 31699116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Metabolic Rewiring of Yeast Enables Overproduction of Sesquiterpene (+)-Valencene.
    Cao C; Cao X; Yu W; Chen Y; Lin X; Zhu B; Zhou YJ
    J Agric Food Chem; 2022 Jun; 70(23):7180-7187. PubMed ID: 35657170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast.
    Qu Z; Zhang L; Zhu S; Yuan W; Hang J; Yin D; Tang X; Zheng J; Wang Z; Sun J
    Enzyme Microb Technol; 2020 Mar; 134():109485. PubMed ID: 32044032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Stable integration sites in
    Chen D; Zhu C; Chen H; Zhou J; Li S
    Sheng Wu Gong Cheng Xue Bao; 2024 Jun; 40(6):1924-1934. PubMed ID: 38914501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of
    Li W; Yan X; Zhang Y; Liang D; Caiyin Q; Qiao J
    J Agric Food Chem; 2021 Feb; 69(7):2236-2244. PubMed ID: 33586967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the sesquiterpene synthase AcTPS1 and high production of (-)-germacrene D in metabolically engineered Saccharomyces cerevisiae.
    Liu J; Chen C; Wan X; Yao G; Bao S; Wang F; Wang K; Song T; Han P; Jiang H
    Microb Cell Fact; 2022 May; 21(1):89. PubMed ID: 35585553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast.
    Peng B; Plan MR; Carpenter A; Nielsen LK; Vickers CE
    Biotechnol Biofuels; 2017; 10():43. PubMed ID: 28239415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters.
    Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    Biotechnol Bioeng; 2014 Sep; 111(9):1740-7. PubMed ID: 24752598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae.
    Peng B; Esquirol L; Lu Z; Shen Q; Cheah LC; Howard CB; Scott C; Trau M; Dumsday G; Vickers CE
    Nat Commun; 2022 May; 13(1):2895. PubMed ID: 35610221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin-mediated induction of GAL promoters by conditional degradation of Mig1p improves sesquiterpene production in Saccharomyces cerevisiae with engineered acetyl-CoA synthesis.
    Hayat IF; Plan M; Ebert BE; Dumsday G; Vickers CE; Peng B
    Microb Biotechnol; 2021 Nov; 14(6):2627-2642. PubMed ID: 34499421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast.
    Lu Z; Peng B; Ebert BE; Dumsday G; Vickers CE
    Nat Commun; 2021 Feb; 12(1):1051. PubMed ID: 33594068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Genome and Plasmid-Based Engineering of Multigene Benzylglucosinolate Pathway in Saccharomyces cerevisiae.
    Wang C; Poborsky M; Crocoll C; Nødvig CS; Mortensen UH; Halkier BA
    Appl Environ Microbiol; 2022 Nov; 88(22):e0097822. PubMed ID: 36326240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of sesquiterpene patchoulol in mitochondrion-engineered Saccharomyces cerevisiae.
    Tao XY; Lin YC; Wang FQ; Liu QH; Ma YS; Liu M; Wei DZ
    Biotechnol Lett; 2022 Apr; 44(4):571-580. PubMed ID: 35254611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae.
    Dai Z; Liu Y; Huang L; Zhang X
    Biotechnol Bioeng; 2012 Nov; 109(11):2845-53. PubMed ID: 22566191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the neutral sites for integrated gene expression in Saccharomyces cerevisiae.
    Kong S; Yu W; Gao N; Zhai X; Zhou YJ
    FEMS Microbiol Lett; 2022 Sep; 369(1):. PubMed ID: 35981819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae.
    Lindahl AL; Olsson ME; Mercke P; Tollbom O; Schelin J; Brodelius M; Brodelius PE
    Biotechnol Lett; 2006 Apr; 28(8):571-80. PubMed ID: 16614895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production.
    Zhang C; Li M; Zhao GR; Lu W
    J Agric Food Chem; 2020 Feb; 68(5):1382-1389. PubMed ID: 31944688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of yeast producing patchoulol by global metabolic engineering strategy.
    Mitsui R; Nishikawa R; Yamada R; Matsumoto T; Ogino H
    Biotechnol Bioeng; 2020 May; 117(5):1348-1356. PubMed ID: 31981219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.