These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38084917)

  • 61. High-copy genome integration and stable production of p-coumaric acid via a POT1-mediated strategy in Saccharomyces cerevisiae.
    Qi H; Li Y; Cai M; He J; Liu J; Song X; Ma Z; Xu H; Qiao M
    J Appl Microbiol; 2022 Aug; 133(2):707-719. PubMed ID: 35462447
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis.
    Asadollahi MA; Maury J; Møller K; Nielsen KF; Schalk M; Clark A; Nielsen J
    Biotechnol Bioeng; 2008 Feb; 99(3):666-77. PubMed ID: 17705244
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae.
    Peng B; Nielsen LK; Kampranis SC; Vickers CE
    Metab Eng; 2018 May; 47():83-93. PubMed ID: 29471044
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Metabolic engineering of the malonyl-CoA pathway to efficiently produce malonate in Saccharomyces cerevisiae.
    Li S; Fu W; Su R; Zhao Y; Deng Y
    Metab Eng; 2022 Sep; 73():1-10. PubMed ID: 35643281
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metabolic engineering of sesquiterpene metabolism in yeast.
    Takahashi S; Yeo Y; Greenhagen BT; McMullin T; Song L; Maurina-Brunker J; Rosson R; Noel JP; Chappell J
    Biotechnol Bioeng; 2007 May; 97(1):170-81. PubMed ID: 17013941
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome.
    Blount BA; Gowers GF; Ho JCH; Ledesma-Amaro R; Jovicevic D; McKiernan RM; Xie ZX; Li BZ; Yuan YJ; Ellis T
    Nat Commun; 2018 May; 9(1):1932. PubMed ID: 29789540
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Engineering Saccharomyces cerevisiae for geranylgeraniol overproduction by combinatorial design.
    Song TQ; Ding MZ; Zhai F; Liu D; Liu H; Xiao WH; Yuan YJ
    Sci Rep; 2017 Nov; 7(1):14991. PubMed ID: 29118396
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Overproduction of isoprenoids by Saccharomyces cerevisiae in a synthetic grape juice medium in the absence of plant genes.
    Camesasca L; Minteguiaga M; Fariña L; Salzman V; Aguilar PS; Gaggero C; Carrau F
    Int J Food Microbiol; 2018 Oct; 282():42-48. PubMed ID: 29902782
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Production of (+)-valencene in the mushroom-forming fungus S. commune.
    Scholtmeijer K; Cankar K; Beekwilder J; Wösten HA; Lugones LG; Bosch D
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):5059-68. PubMed ID: 24531273
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced production of taxadiene in Saccharomyces cerevisiae.
    Nowrouzi B; Li RA; Walls LE; d'Espaux L; Malcı K; Liang L; Jonguitud-Borrego N; Lerma-Escalera AI; Morones-Ramirez JR; Keasling JD; Rios-Solis L
    Microb Cell Fact; 2020 Nov; 19(1):200. PubMed ID: 33138820
    [TBL] [Abstract][Full Text] [Related]  

  • 71. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae.
    Jensen NB; Strucko T; Kildegaard KR; David F; Maury J; Mortensen UH; Forster J; Nielsen J; Borodina I
    FEMS Yeast Res; 2014 Mar; 14(2):238-48. PubMed ID: 24151867
    [TBL] [Abstract][Full Text] [Related]  

  • 72. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae.
    Taxis C; Knop M
    Biotechniques; 2006 Jan; 40(1):73-8. PubMed ID: 16454043
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids.
    Ignea C; Cvetkovic I; Loupassaki S; Kefalas P; Johnson CB; Kampranis SC; Makris AM
    Microb Cell Fact; 2011 Jan; 10():4. PubMed ID: 21276210
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae.
    Yamada R; Wakita K; Ogino H
    ACS Synth Biol; 2017 Apr; 6(4):659-666. PubMed ID: 28080037
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.
    Lian J; Bao Z; Hu S; Zhao H
    Biotechnol Bioeng; 2018 Jun; 115(6):1630-1635. PubMed ID: 29460422
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Stability of recombinant plasmids containing the ars sequence of yeast extrachromosomal rDNA in several strains of Saccharomyces cerevisiae.
    Larionov V; Kouprina N; Karpova T
    Gene; 1984 May; 28(2):229-35. PubMed ID: 6376287
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A set of isomeric episomal plasmids for systematic examination of mitotic stability in Saccharomyces cerevisiae.
    Hohnholz R; Pohlmann KJ; Achstetter T
    Yeast; 2017 Jun; 34(6):267-275. PubMed ID: 28207166
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Highly efficient rDNA-mediated multicopy integration based on the dynamic balance of rDNA in Saccharomyces cerevisiae.
    Zheng H; Wang K; Xu X; Pan J; Sun X; Hou J; Liu W; Shen Y
    Microb Biotechnol; 2022 May; 15(5):1511-1524. PubMed ID: 35098688
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Building terpene production platforms in yeast.
    Zhuang X; Chappell J
    Biotechnol Bioeng; 2015 Sep; 112(9):1854-64. PubMed ID: 25788404
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Genetic study of plasmid integration into yeast chromosomes. V. Mapping of integration sites for the plasmid pYF91].
    Bulat SA; Mezhevaia EV; Stepanova VP; Iarovoĭ BF; Zakharov IA
    Genetika; 1987 Aug; 23(8):1407-13. PubMed ID: 3311880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.