These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38084917)

  • 81. [Production of amorpha-4,11-diene in engineered yeasts].
    Kong JQ; Shen JH; Huang Y; Wang W; Cheng KD; Zhu P
    Yao Xue Xue Bao; 2009 Nov; 44(11):1297-303. PubMed ID: 21355330
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses.
    Hasunuma T; Hori Y; Sakamoto T; Ochiai M; Hatanaka H; Kondo A
    Microb Cell Fact; 2014 Oct; 13():145. PubMed ID: 25306430
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose.
    Yin H; Hu T; Zhuang Y; Liu T
    Microb Cell Fact; 2020 Nov; 19(1):218. PubMed ID: 33243241
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories.
    Zhao Y; Yao Z; Ploessl D; Ghosh S; Monti M; Schindler D; Gao M; Cai Y; Qiao M; Yang C; Cao M; Shao Z
    ACS Synth Biol; 2020 Jul; 9(7):1736-1752. PubMed ID: 32396718
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The CDC8 gene product is required for transformation with episomal and integrative plasmids in Saccharomyces cerevisiae.
    Lecka-Czernik B; Zuk J
    Curr Genet; 1991 Sep; 20(4):265-7. PubMed ID: 1657418
    [TBL] [Abstract][Full Text] [Related]  

  • 86. [Construction of an engineered Saccharomyces cerevisiae expressing endoglucanase efficiently].
    Wang Y; Zhang S; Chen G
    Sheng Wu Gong Cheng Xue Bao; 2020 Oct; 36(10):2193-2205. PubMed ID: 33169583
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A set of novel CRISPR-based integrative vectors for
    Daniels PW; Mukherjee A; Goldman AS; Hu B
    Wellcome Open Res; 2018; 3():72. PubMed ID: 30057946
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Repetitive δ-integration of a cellulase-encoding gene into the chromosome of an industrial Angel Yeast-derived strain by URA3 recycling.
    Zou S; Sun S; Zhang X; Li J; Guo J; Hong J; Ma Y; Zhang M
    Biotechnol Appl Biochem; 2021 Oct; 68(5):953-963. PubMed ID: 32658331
    [TBL] [Abstract][Full Text] [Related]  

  • 89. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Fast and antibiotic free genome integration into Escherichia coli chromosome.
    Egger E; Tauer C; Cserjan-Puschmann M; Grabherr R; Striedner G
    Sci Rep; 2020 Oct; 10(1):16510. PubMed ID: 33020519
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Improved production of Taxol
    Malcı K; Santibáñez R; Jonguitud-Borrego N; Santoyo-Garcia JH; Kerkhoven EJ; Rios-Solis L
    Microb Cell Fact; 2023 Nov; 22(1):243. PubMed ID: 38031061
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory.
    Zhang C; Li M; Zhao GR; Lu W
    Microb Cell Fact; 2019 Sep; 18(1):160. PubMed ID: 31547812
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A systems-level approach for metabolic engineering of yeast cell factories.
    Kim IK; Roldão A; Siewers V; Nielsen J
    FEMS Yeast Res; 2012 Mar; 12(2):228-48. PubMed ID: 22188344
    [TBL] [Abstract][Full Text] [Related]  

  • 94. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Three-step pathway engineering results in more incidence rate and higher emission of nerolidol and improved attraction of Diadegma semiclausum.
    Houshyani B; Assareh M; Busquets A; Ferrer A; Bouwmeester HJ; Kappers IF
    Metab Eng; 2013 Jan; 15():88-97. PubMed ID: 23154132
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Plasmid Copy Number Engineering Accelerates Fungal Polyketide Discovery upon Unnatural Polyketide Biosynthesis.
    Li Y; Lin P; Lu X; Yan H; Wei H; Liu C; Liu X; Yang Y; Molnár I; Bai Z
    ACS Synth Biol; 2023 Aug; 12(8):2226-2235. PubMed ID: 37463503
    [No Abstract]   [Full Text] [Related]  

  • 97. The synthetic biology toolbox for tuning gene expression in yeast.
    Redden H; Morse N; Alper HS
    FEMS Yeast Res; 2015 Feb; 15(1):1-10. PubMed ID: 25047958
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Metabolic engineering to produce sesquiterpenes in yeast.
    Jackson BE; Hart-Wells EA; Matsuda SP
    Org Lett; 2003 May; 5(10):1629-32. PubMed ID: 12735738
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Improvement of S-adenosylmethionine production by integration of the ethionine-resistance gene into chromosomes of the yeast Saccharomyces cerevisiae.
    Shiomi N; Fukuda H; Murata K; Kimura A
    Appl Microbiol Biotechnol; 1995 Jan; 42(5):730-3. PubMed ID: 7765914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.