BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38084945)

  • 1. Seasonal trends in lysogeny in an Appalachian oak-hickory forest soil.
    Jacoby ML; Hogg GD; Assaad MR; Williamson KE
    Appl Environ Microbiol; 2024 Jan; 90(1):e0140823. PubMed ID: 38084945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivation-based assessment of lysogeny among soil bacteria.
    Williamson KE; Schnitker JB; Radosevich M; Smith DW; Wommack KE
    Microb Ecol; 2008 Oct; 56(3):437-47. PubMed ID: 18322729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA.
    Ghosh D; Roy K; Williamson KE; White DC; Wommack KE; Sublette KL; Radosevich M
    Appl Environ Microbiol; 2008 Jan; 74(2):495-502. PubMed ID: 17993550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incidence of lysogeny within temperate and extreme soil environments.
    Williamson KE; Radosevich M; Smith DW; Wommack KE
    Environ Microbiol; 2007 Oct; 9(10):2563-74. PubMed ID: 17803780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophage Distributions and Temporal Variability in the Ocean's Interior.
    Luo E; Aylward FO; Mende DR; DeLong EF
    mBio; 2017 Nov; 8(6):. PubMed ID: 29184020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny.
    Al-Anany AM; Fatima R; Nair G; Mayol JT; Hynes AP
    mBio; 2024 Jun; 15(6):e0050424. PubMed ID: 38757974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability and host density independence in inductions-based estimates of environmental lysogeny.
    Knowles B; Bailey B; Boling L; Breitbart M; Cobián-Güemes A; Del Campo J; Edwards R; Felts B; Grasis J; Haas AF; Katira P; Kelly LW; Luque A; Nulton J; Paul L; Peters G; Robinett N; Sandin S; Segall A; Silveira C; Youle M; Rohwer F
    Nat Microbiol; 2017 Apr; 2():17064. PubMed ID: 28452987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal Dynamics of Soil Virus and Bacterial Populations in Agricultural and Early Plant Successional Soils.
    Roy K; Ghosh D; DeBruyn JM; Dasgupta T; Wommack KE; Liang X; Wagner RE; Radosevich M
    Front Microbiol; 2020; 11():1494. PubMed ID: 32733413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages.
    Brady A; Felipe-Ruiz A; Gallego Del Sol F; Marina A; Quiles-Puchalt N; Penadés JR
    Annu Rev Microbiol; 2021 Oct; 75():563-581. PubMed ID: 34343015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysogeny in nature: mechanisms, impact and ecology of temperate phages.
    Howard-Varona C; Hargreaves KR; Abedon ST; Sullivan MB
    ISME J; 2017 Jul; 11(7):1511-1520. PubMed ID: 28291233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem.
    Coclet C; Sorensen PO; Karaoz U; Wang S; Brodie EL; Eloe-Fadrosh EA; Roux S
    Microbiome; 2023 Oct; 11(1):237. PubMed ID: 37891627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneously induced prophages are abundant in a naturally evolved bacterial starter culture and deliver competitive advantage to the host.
    Alexeeva S; Guerra Martínez JA; Spus M; Smid EJ
    BMC Microbiol; 2018 Sep; 18(1):120. PubMed ID: 30249194
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Sinha V; Goyal A; Svenningsen SL; Semsey S; Krishna S
    Front Microbiol; 2017; 8():1386. PubMed ID: 28798729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperate phage-antibiotic synergy eradicates bacteria through depletion of lysogens.
    Al-Anany AM; Fatima R; Hynes AP
    Cell Rep; 2021 May; 35(8):109172. PubMed ID: 34038739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling Ecological and Genetic Novelty within Lytic and Lysogenic Viral Communities of Hot Spring Phototrophic Microbial Mats.
    Guajardo-Leiva S; Santos F; Salgado O; Regeard C; Quillet L; Díez B
    Microbiol Spectr; 2021 Dec; 9(3):e0069421. PubMed ID: 34787442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Host Abundance and High Temperature Determine Switching from Lytic to Lysogenic Cycles in Planktonic Microbial Communities in a Tropical Sea (Red Sea).
    Abdulrahman Ashy R; Agustí S
    Viruses; 2020 Jul; 12(7):. PubMed ID: 32679656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications.
    Zhang M; Zhang T; Yu M; Chen YL; Jin M
    Viruses; 2022 Aug; 14(9):. PubMed ID: 36146712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress.
    Huang D; Yu P; Ye M; Schwarz C; Jiang X; Alvarez PJJ
    Microbiome; 2021 Jun; 9(1):150. PubMed ID: 34183048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hi-C metagenome sequencing reveals soil phage-host interactions.
    Wu R; Davison MR; Nelson WC; Smith ML; Lipton MS; Jansson JK; McClure RS; McDermott JE; Hofmockel KS
    Nat Commun; 2023 Nov; 14(1):7666. PubMed ID: 37996432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal variations of phage life strategies and bacterial physiological states in three northern temperate lakes.
    Maurice CF; Bouvier T; Comte J; Guillemette F; Del Giorgio PA
    Environ Microbiol; 2010 Mar; 12(3):628-41. PubMed ID: 20002137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.