These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38085055)

  • 1. Sample heating above 1400 K in a diamond anvil cell.
    Cao M; Jiang D; Han M; Gao Y; Han Y; Gao C
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38085055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ temperature measurement in the pressure chamber of diamond anvil cell.
    Cao M; Jiang D; Han M; Gao Y; Han Y; Gao C
    Rev Sci Instrum; 2023 Aug; 94(8):. PubMed ID: 38065189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature.
    Miyagi L; Kanitpanyacharoen W; Raju SV; Kaercher P; Knight J; MacDowell A; Wenk HR; Williams Q; Alarcon EZ
    Rev Sci Instrum; 2013 Feb; 84(2):025118. PubMed ID: 23464262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new internally heated diamond anvil cell system for time-resolved optical and x-ray measurements.
    Mijiti Y; Perri M; Coquet J; Nataf L; Minicucci M; Trapananti A; Irifune T; Baudelet F; Di Cicco A
    Rev Sci Instrum; 2020 Aug; 91(8):085114. PubMed ID: 32872921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tungsten external heater for BX90 diamond anvil cells with a range up to 1700 K.
    Yan J; Doran A; MacDowell AA; Kalkan B
    Rev Sci Instrum; 2021 Jan; 92(1):013903. PubMed ID: 33514245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel non-Joule heating technique: Externally laser-heated diamond anvil cell.
    Okuda Y; Oka K; Hikosaka K; Hirose K
    Rev Sci Instrum; 2023 Apr; 94(4):. PubMed ID: 38081254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell.
    Kunz M; Caldwell WA; Miyagi L; Wenk HR
    Rev Sci Instrum; 2007 Jun; 78(6):063907. PubMed ID: 17614626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-temperature experiments using a resistively heated high-pressure membrane diamond anvil cell.
    Jenei Z; Cynn H; Visbeck K; Evans WJ
    Rev Sci Instrum; 2013 Sep; 84(9):095114. PubMed ID: 24089873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Containment of fluid samples in the hydrothermal diamond-anvil cell without the use of metal gaskets: performance and advantages for in situ analysis.
    Chou IM; Bassett WA; Anderson AJ; Mayanovic RA; Shang L
    Rev Sci Instrum; 2008 Nov; 79(11):115103. PubMed ID: 19045909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machinable boron-doped diamond as a practical heating element in multi-anvil apparatuses.
    Xie L
    Rev Sci Instrum; 2021 Feb; 92(2):023901. PubMed ID: 33648111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus.
    Xie L; Yoneda A; Yoshino T; Yamazaki D; Tsujino N; Higo Y; Tange Y; Irifune T; Shimei T; Ito E
    Rev Sci Instrum; 2017 Sep; 88(9):093904. PubMed ID: 28964227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An induction heating diamond anvil cell for high pressure and temperature micro-Raman spectroscopic measurements.
    Shinoda K; Noguchi N
    Rev Sci Instrum; 2008 Jan; 79(1):015101. PubMed ID: 18248060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K.
    Du Z; Miyagi L; Amulele G; Lee KK
    Rev Sci Instrum; 2013 Feb; 84(2):024502. PubMed ID: 23464231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twin sample chamber for simultaneous comparative transport measurements in a diamond anvil cell.
    Schaeffer AM; Deemyad S
    Rev Sci Instrum; 2013 Sep; 84(9):095108. PubMed ID: 24089867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A diamond anvil cell with resistive heating for high pressure and high temperature x-ray diffraction and absorption studies.
    Pasternak S; Aquilanti G; Pascarelli S; Poloni R; Canny B; Coulet MV; Zhang L
    Rev Sci Instrum; 2008 Aug; 79(8):085103. PubMed ID: 19044376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of pulsed light heating thermoreflectance and laser-heated diamond anvil cell for in-situ high pressure-temperature thermal diffusivity measurements.
    Hasegawa A; Yagi T; Ohta K
    Rev Sci Instrum; 2019 Jul; 90(7):074901. PubMed ID: 31370458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note: The effect of sample insulation on experiment precision of resistivity measurement in a diamond anvil cell.
    Peng G; Han Y; Gao C; Ma Y; Wu B; Liu C; Liu B; Hu T; Wang Y; Cui X; Ren W; Liu H; Zou G
    Rev Sci Instrum; 2010 Mar; 81(3):036108. PubMed ID: 20370231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realization of parallel experiments in a diamond anvil cell and their application to water-mineral interactions at high-pressure and high-temperature conditions.
    Jiang R; Lan C; Du J; Tao R
    Rev Sci Instrum; 2022 May; 93(5):053905. PubMed ID: 35649812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphite resistive heated diamond anvil cell for simultaneous high-pressure and high-temperature diffraction experiments.
    Hwang H; Bang Y; Choi J; Cynn H; Jenei Z; Evans WJ; Ehnes A; Schwark I; Glazyrin K; Gatta GD; Lotti P; Sanloup C; Lee Y; Liermann HP
    Rev Sci Instrum; 2023 Aug; 94(8):. PubMed ID: 37540120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-cooling diamond anvil cells: An approach to temperature-pressure relation in heated experiments.
    Zhang Y; Wu Y; Han Y; Gao Y
    Rev Sci Instrum; 2022 Oct; 93(10):103904. PubMed ID: 36319329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.