BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38085133)

  • 1. Programmable Gravity Self-Driven Microfluidic Chip for Point-of-Care Multiplied Immunoassays.
    Yuan H; Wan C; Wang X; Li S; Xie H; Qian C; Du W; Feng X; Li Y; Chen P; Liu BF
    Small; 2024 May; 20(21):e2310206. PubMed ID: 38085133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.
    Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH
    Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
    Tarn MD; Pamme N
    Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.
    Temiz Y; Delamarche E
    Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics for COVID-19: From Current Work to Future Perspective.
    Li Q; Zhou X; Wang Q; Liu W; Chen C
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA.
    Yu ZT; Guan H; Cheung MK; McHugh WM; Cornell TT; Shanley TP; Kurabayashi K; Fu J
    Sci Rep; 2015 Jun; 5():11339. PubMed ID: 26074253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transposing Lateral Flow Immunoassays to Capillary-Driven Microfluidics Using Self-Coalescence Modules and Capillary-Assembled Receptor Carriers.
    Hemmig E; Temiz Y; Gökçe O; Lovchik RD; Delamarche E
    Anal Chem; 2020 Jan; 92(1):940-946. PubMed ID: 31860276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-Line Dual-Active Valves Based Centrifugal Microfluidic Chip for Fully Automated Point-of-Care Immunoassay.
    Qian C; Wan C; Li S; Xiao Y; Yuan H; Gao S; Wu L; Zhou M; Feng X; Li Y; Chen P; Liu BF
    Anal Chem; 2023 Aug; 95(33):12521-12531. PubMed ID: 37556853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compact and integrated immunoassay with on-chip dispensing and magnetic particle handling.
    Zirath H; Peham JR; Schnetz G; Coll A; Brandhoff L; Spittler A; Vellekoop MJ; Redl H
    Biomed Microdevices; 2016 Feb; 18(1):16. PubMed ID: 26842948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices.
    Park J; Han DH; Park JK
    Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunoassays in microfluidic systems.
    Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2010 Jun; 397(3):991-1007. PubMed ID: 20422163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic chips for immunoassays.
    Han KN; Li CA; Seong GH
    Annu Rev Anal Chem (Palo Alto Calif); 2013; 6():119-41. PubMed ID: 23495732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials for Microfluidic Immunoassays: A Review.
    Mou L; Jiang X
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28322517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in non-optical microfluidic platforms for bioparticle detection.
    Bayinqiaoge ; Zhang Y; Cole T; Zheng J; Guo J; Tang SY
    Biosens Bioelectron; 2023 Feb; 222():114944. PubMed ID: 36470061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reagent storage and delivery on integrated microfluidic chips for point-of-care diagnostics.
    Rasekh M; Harrison S; Schobesberger S; Ertl P; Balachandran W
    Biomed Microdevices; 2024 Jun; 26(3):28. PubMed ID: 38825594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated microfluidic system with one-dimensional beads array for multiplexed torch detection at point-of-care testing.
    Li H; Yu S; Wang D; Huang X; Fu Q; Xu D; Zhang L; Qian S; Qiu X
    Biomed Microdevices; 2022 Nov; 24(4):38. PubMed ID: 36326901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.
    Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF
    Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads.
    Feng Z; Zhi S; Guo L; Zhou Y; Lei C
    Mikrochim Acta; 2019 Mar; 186(4):252. PubMed ID: 30903388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.