These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38085154)

  • 1. Characteristics and Stability of Ozone Nanobubbles in Freshwater Conditions.
    Soyluoglu M; Kim D; Karanfil T
    Environ Sci Technol; 2023 Dec; 57(51):21898-21907. PubMed ID: 38085154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of Oxygen Nanobubbles under Freshwater Conditions.
    Soyluoglu M; Kim D; Zaker Y; Karanfil T
    Water Res; 2021 Nov; 206():117749. PubMed ID: 34678695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanobubble Technologies Offer Opportunities To Improve Water Treatment.
    Atkinson AJ; Apul OG; Schneider O; Garcia-Segura S; Westerhoff P
    Acc Chem Res; 2019 May; 52(5):1196-1205. PubMed ID: 30958672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of organic matter and alkalinity on the ozonation of antiviral purine derivatives as exemplary micropollutant motif.
    Merkus VI; Leupold MS; Rockel SP; Lutze HV; Schmidt TC
    Water Res; 2023 Sep; 243():120387. PubMed ID: 37506631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation.
    De Vera GA; Stalter D; Gernjak W; Weinberg HS; Keller J; Farré MJ
    Water Res; 2015 Dec; 87():49-58. PubMed ID: 26378731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation.
    Onstad GD; Strauch S; Meriluoto J; Codd GA; Von Gunten U
    Environ Sci Technol; 2007 Jun; 41(12):4397-404. PubMed ID: 17626442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the role of superoxide radical as chain carrier for the formation of hydroxyl radical during ozonation.
    Guo Y; Yu G; von Gunten U; Wang Y
    Water Res; 2023 Aug; 242():120158. PubMed ID: 37329717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of ozonation on natural organic matter removal by alum coagulation.
    Bose P; Reckhow DA
    Water Res; 2007 Apr; 41(7):1516-24. PubMed ID: 17275876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.
    Mao Y; Guo D; Yao W; Wang X; Yang H; Xie YF; Komarneni S; Yu G; Wang Y
    Water Res; 2018 Mar; 130():322-332. PubMed ID: 29247948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities.
    Önnby L; Salhi E; McKay G; Rosario-Ortiz FL; von Gunten U
    Water Res; 2018 Nov; 144():64-75. PubMed ID: 30014980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of N-nitrosodimethylamine formation from ranitidine by ozonation preceding chloramination: influencing factors and mechanisms.
    Zou R; Liao X; Zhao L; Yuan B
    Environ Sci Pollut Res Int; 2018 May; 25(14):13489-13498. PubMed ID: 29492817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions.
    Koundle P; Nirmalkar N; Momotko M; Boczkaj G
    Water Res; 2024 Oct; 263():122148. PubMed ID: 39098154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential.
    Song Y; Breider F; Ma J; von Gunten U
    Water Res; 2017 Oct; 122():246-257. PubMed ID: 28623834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation behavior of 17alpha-ethinylestradiol by ozonation in the synthetic secondary effluent.
    Zhang Z; Zhu H; Wen X; Si X
    J Environ Sci (China); 2012; 24(2):228-33. PubMed ID: 22655381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafine bubbles as an augmenting agent for ozone-based advanced oxidation.
    Temesgen T; Han M
    Water Sci Technol; 2021 Dec; 84(12):3705-3715. PubMed ID: 34928837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water.
    Rodríguez EM; Márquez G; León EA; Álvarez PM; Amat AM; Beltrán FJ
    J Environ Manage; 2013 Sep; 127():114-24. PubMed ID: 23685272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the prediction of micropollutant elimination during bromide ion-containing industrial wastewater ozonation using the R
    Koo JW; Lee J; Nam SH; Kye H; Kim E; Kim H; Lee Y; Hwang TM
    Chemosphere; 2023 Oct; 338():139450. PubMed ID: 37451645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of synergistic effects between ozone and coagulants (SOC) in the electro-hybrid ozonation-coagulation process.
    Jin X; Xie X; Liu Y; Wang Y; Wang R; Jin P; Yang C; Shi X; Wang XC; Xu H
    Water Res; 2020 Jun; 177():115800. PubMed ID: 32315900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Fenton and ozone on oxidation of wastewater containing nitroaromatic compounds.
    Al Momani F; Shawaqfah M; Shawaqfeh A; Al-Shannag M
    J Environ Sci (China); 2008; 20(6):675-82. PubMed ID: 18763561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decolorization and control of bromate formation in membrane ozonation of humic-rich groundwater.
    Kämmler J; Zoumpouli GA; Sellmann J; Chew YMJ; Wenk J; Ernst M
    Water Res; 2022 Aug; 221():118739. PubMed ID: 35716412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.