These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 3808591)

  • 1. Freezing-thawing hysteresis. I. NMR detection in human lens.
    Pócsik I; Furó I; Rácz P
    Ophthalmic Res; 1986; 18(5):270-4. PubMed ID: 3808591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freezing-thawing hysteresis. II. Investigation of human ocular tissues.
    Pócsik I; Furó I; Rácz P
    Ophthalmic Res; 1986; 18(5):275-8. PubMed ID: 3808592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration water/interfacial water in crystalline lens.
    Tompa K; Bánki P; Bokor M; Kamasa P; Rácz P; Tompa P
    Exp Eye Res; 2010 Jul; 91(1):76-84. PubMed ID: 20412792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freezable and non-freezable water content of cataractous human lenses.
    Bettelheim FA; Ali S; White O; Chylack LT
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):122-5. PubMed ID: 3941033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in the kinetics of water transport in normal human lenses.
    Moffat BA; Landman KA; Truscott RJ; Sweeney MH; Pope JM
    Exp Eye Res; 1999 Dec; 69(6):663-9. PubMed ID: 10620395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extent and properties of nonbulk "bound" water in crystalline lens cells.
    Cameron IL; Contreras E; Fullerton GD; Kellermayer M; Ludány A; Miseta A
    J Cell Physiol; 1988 Oct; 137(1):125-32. PubMed ID: 3170652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transitions in ocular tissue - NMR and temperature measurements.
    Seiler T; Müller-Stolzenburg N; Wollensak J
    Graefes Arch Clin Exp Ophthalmol; 1983; 221(3):122-5. PubMed ID: 6667860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water self-diffusion in the calf lens.
    Haner RL; Schleich T; Morgan CF; Rydzewski JM
    Exp Eye Res; 1989 Sep; 49(3):371-6. PubMed ID: 2792234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intralenticular water interactions with phosphates in the intact crystalline lens.
    Glonek T; Greiner JV
    Ophthalmic Res; 1990; 22(5):302-9. PubMed ID: 2090984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic water transport in the human eye lens studied by diffusion tensor NMR micro-imaging.
    Moffat BA; Pope JM
    Exp Eye Res; 2002 Jun; 74(6):677-87. PubMed ID: 12126942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topographic correspondence between total and non-freezable water content and the appearance of cataract in human lenses.
    Bettelheim FA; Castoro JA; White O; Chylack LT
    Curr Eye Res; 1986 Dec; 5(12):925-32. PubMed ID: 3802895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do changes in the hydration of the diabetic human lens precede cataract formation?
    Bettelheim FA; Li L; Zeng FF
    Res Commun Mol Pathol Pharmacol; 1998 Oct; 102(1):3-14. PubMed ID: 9920342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syneretic response of aging normal human lens to pressure.
    Bettelheim FA; Lizak MJ; Zigler JS
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):258-63. PubMed ID: 12506083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the X-ray diffraction pattern from lens during a solid-to-liquid phase transition.
    Regini JW; Meek KM
    Curr Eye Res; 2009 Jun; 34(6):492-500. PubMed ID: 19899984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-mortem water uptake by sheep lenses left in situ.
    Augusteyn RC; Cake MA
    Mol Vis; 2005 Sep; 11():749-51. PubMed ID: 16179906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [1H-NMR study on protein of normal and galactose cataractous rat whole lenses].
    Kaizuka Y
    Nippon Ganka Gakkai Zasshi; 1992 Jan; 96(1):15-21. PubMed ID: 1553869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H NMR and calorimetric measurements on rabbit eye lenses.
    Gutsze A; Bodurka J; Olechnowicz R; Buntkowsky G; Limbach HH
    Z Naturforsch C J Biosci; 1995; 50(5-6):410-8. PubMed ID: 7546034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxographic studies of aging normal human lenses.
    Bettelheim FA; Lizak MJ; Zigler JS
    Exp Eye Res; 2002 Dec; 75(6):695-702. PubMed ID: 12470971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional water content of clear and cataractous human lenses.
    Deussen A; Pau H
    Ophthalmic Res; 1989; 21(5):374-80. PubMed ID: 2601943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The state of water in normal human, bird and fish eye lenses.
    Rácz P; Tompa K; Pócsik I
    Exp Eye Res; 1979 Dec; 29(6):601-8. PubMed ID: 544279
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.