These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 3808591)

  • 21. Measurements of proton relaxation time T2 on cattle eyes lenses.
    Gutsze A; Deninger D; Olechnowicz R; Bodurka JA
    Lens Eye Toxic Res; 1991; 8(2-3):155-62. PubMed ID: 1655010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time dependency of metabolic changes in rat lens after in vivo UVB irradiation analysed by HR-MAS 1H NMR spectroscopy.
    Risa O; Saether O; Kakar M; Mody V; Löfgren S; Söderberg PG; Krane J; Midelfart A
    Exp Eye Res; 2005 Oct; 81(4):407-14. PubMed ID: 16185952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR relaxation studies of syneretic response to pressure change in bovine lenses.
    Bettelheim FA; Lizak MJ; Zigler JS
    Curr Eye Res; 2001 Jun; 22(6):438-45. PubMed ID: 11584343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [NMR study of the state of water in the human lens during cataract development].
    Babizhaev MA; Deev AI; Nikolaev GM
    Biofizika; 1985; 30(4):671-4. PubMed ID: 4052470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 1H magnetic resonance imaging study of bovine ocular tissue.
    Williams TR; Perry BC; Koenig JL
    Ophthalmic Res; 1990; 22(2):89-94. PubMed ID: 2342783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age-related changes in water and crystallin content of the fetal and adult human lens, demonstrated by a microsectioning technique.
    Bours J; Födisch HJ; Hockwin O
    Ophthalmic Res; 1987; 19(4):235-9. PubMed ID: 3320839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Causes of decreased phase transition temperature in selenite cataract model.
    Mitton KP; Hess JL; Bunce GE
    Invest Ophthalmol Vis Sci; 1995 Apr; 36(5):914-24. PubMed ID: 7706040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium-23 and potassium-39 nuclear magnetic resonance relaxation in eye lens. Examples of quadrupole ion magnetic relaxation in a crowded protein environment.
    Stevens A; Paschalis P; Schleich T
    Biophys J; 1992 May; 61(5):1061-75. PubMed ID: 1600073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman study of the lenses of spontaneously-occurring and streptozotocin-induced diabetic rats.
    Toshima S; Miyazaki H; Mizuno A
    Jpn J Ophthalmol; 1990; 34(4):436-41. PubMed ID: 2150537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Free and bound water in normal and cataractous human lenses.
    Heys KR; Friedrich MG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):1991-7. PubMed ID: 18436831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and regional water content of bovine, porcine, and human lenses examined with proton nuclear magnetic resonance imaging.
    Shaw EM; Williams TR; Koenig JL
    Ophthalmic Res; 1995; 27(5):268-76. PubMed ID: 8552367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Uptake of 86Rb in the lenses of rats during ontogenesis].
    Sládková J; Ostádalová I; Michl J; Babický A; Obenberger J
    Cesk Oftalmol; 1984 Nov; 40(6):340-4. PubMed ID: 6518547
    [No Abstract]   [Full Text] [Related]  

  • 33. From E.M. microprobe analysis to NMRD studies of the lens.
    Clark JI; Beaulieu CF
    Lens Eye Toxic Res; 1989; 6(4):523-39. PubMed ID: 2562119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological response in various compartments of the rat lens after in vivo exposure to UVR-B analyzed by HR-MAS 1H NMR spectroscopy.
    Tessem MB; Bathen TF; Löfgren S; Saether O; Mody V; Meyer L; Dong X; Söderberg PG; Midelfart A
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5404-11. PubMed ID: 17122130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of diabetes and insulin treatment on sorbitol and water of rat lenses.
    Coulter JB; Eaton DK; Marr LK
    Ophthalmic Res; 1986; 18(6):357-62. PubMed ID: 3299199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear magnetic resonance study of free and bound water fractions in normal lenses.
    Stankeiwicz PJ; Metz KR; Sassani JW; Briggs RW
    Invest Ophthalmol Vis Sci; 1989 Nov; 30(11):2361-9. PubMed ID: 2807793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Detection of sorbitol content in crystalline lens of normal rats and rats with diabetic cataract by 1H-NMR].
    Zhang S; Zhaug Y; Liu X; Liu Q; Zhang M; He Y
    Hua Xi Yi Ke Da Xue Xue Bao; 1990 Jun; 21(2):125-7. PubMed ID: 2391091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of diadenosine-triphosphate in mature bovine lenses.
    Szwergold BS; Lal S
    Biochem Biophys Res Commun; 2005 Jan; 326(4):718-23. PubMed ID: 15607728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MAS
    Mandal A; van der Wel PCA
    Biophys J; 2016 Nov; 111(9):1965-1973. PubMed ID: 27806278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.