These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38085927)

  • 1. Infrared Resonance Tuning of Nanoslit Antennas with Phase-Change Materials.
    Conrads L; Heßler A; Völkel L; Wilden K; Strauch A; Pries J; Wuttig M; Taubner T
    ACS Nano; 2023 Dec; 17(24):25721-25730. PubMed ID: 38085927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In
    Heßler A; Wahl S; Leuteritz T; Antonopoulos A; Stergianou C; Schön CF; Naumann L; Eicker N; Lewin M; Maß TWW; Wuttig M; Linden S; Taubner T
    Nat Commun; 2021 Feb; 12(1):924. PubMed ID: 33568636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct programming of confined surface phonon polariton resonators with the plasmonic phase-change material In
    Conrads L; Schüler L; Wirth KG; Wuttig M; Taubner T
    Nat Commun; 2024 Apr; 15(1):3472. PubMed ID: 38658601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical nanoimaging of laser-switched phase-change plasmonic infrared antennas.
    Chen Q; Lu D; Qin T; Luo X; Xu M; Li P
    Opt Lett; 2024 Feb; 49(4):1021-1024. PubMed ID: 38359232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical tuning of phase-change antennas and metasurfaces.
    Wang Y; Landreman P; Schoen D; Okabe K; Marshall A; Celano U; Wong HP; Park J; Brongersma ML
    Nat Nanotechnol; 2021 Jun; 16(6):667-672. PubMed ID: 33875869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband hyperbolic thermal metasurfaces based on the plasmonic phase-change material In
    Meng C; Zeng Y; Lu D; Zou H; Wang J; He Q; Yang X; Xu M; Miao X; Zhang X; Li P
    Nanoscale; 2023 Mar; 15(13):6306-6312. PubMed ID: 36912480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced Optical Programming of Individual Meta-Atoms Beyond the Effective Medium Approach.
    Michel AU; Heßler A; Meyer S; Pries J; Yu Y; Kalix T; Lewin M; Hanss J; De Rose A; Maß TWW; Wuttig M; Chigrin DN; Taubner T
    Adv Mater; 2019 Jul; 31(29):e1901033. PubMed ID: 31131947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of hybrid narrow-band plasmonic absorber based on chalcogenide phase change material in the infrared spectrum.
    Alves Oliveira I; Gomes de Souza IL; Rodriguez-Esquerre VF
    Sci Rep; 2021 Nov; 11(1):21919. PubMed ID: 34754022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects.
    Zou L; Cryan M; Klemm M
    Opt Express; 2014 Oct; 22(20):24142-8. PubMed ID: 25321989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable nanophotonic planar resonator filter-absorber based on phase-change InSbTe.
    Oliveira IA; de Souza ILG; Rodriguez-Esquerre VF
    Sci Rep; 2023 Aug; 13(1):13225. PubMed ID: 37580408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas.
    Simon T; Li X; Martin J; Khlopin D; Stéphan O; Kociak M; Gérard D
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using low-loss phase-change materials for mid-infrared antenna resonance tuning.
    Michel AK; Chigrin DN; Maß TW; Schönauer K; Salinga M; Wuttig M; Taubner T
    Nano Lett; 2013 Aug; 13(8):3470-5. PubMed ID: 23742151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigurable infrared hyperbolic metasurfaces using phase change materials.
    Folland TG; Fali A; White ST; Matson JR; Liu S; Aghamiri NA; Edgar JH; Haglund RF; Abate Y; Caldwell JD
    Nat Commun; 2018 Oct; 9(1):4371. PubMed ID: 30349033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible Tuning of Mie Resonances in the Visible Spectrum.
    Lu L; Dong Z; Tijiptoharsono F; Ng RJH; Wang H; Rezaei SD; Wang Y; Leong HS; Lim PC; Yang JKW; Simpson RE
    ACS Nano; 2021 Dec; 15(12):19722-19732. PubMed ID: 34881865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broad electrical tuning of graphene-loaded plasmonic antennas.
    Yao Y; Kats MA; Genevet P; Yu N; Song Y; Kong J; Capasso F
    Nano Lett; 2013 Mar; 13(3):1257-64. PubMed ID: 23441688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared modulation by means of GeTe/SOI-based metamaterial.
    Petronijevic E; Leahu G; Di Meo V; Crescitelli A; Dardano P; Coppola G; Esposito E; Rendina I; Miritello M; Grimaldi MG; Torrisi V; Compagnini G; Sibilia C
    Opt Lett; 2019 Mar; 44(6):1508-1511. PubMed ID: 30874688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable Wavefront Control in the Visible Spectrum Using Low-Loss Chalcogenide Phase-Change Metasurfaces.
    Moitra P; Wang Y; Liang X; Lu L; Poh A; Mass TWW; Simpson RE; Kuznetsov AI; Paniagua-Dominguez R
    Adv Mater; 2023 Aug; 35(34):e2205367. PubMed ID: 36341483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically Tunable All-PCM Visible Plasmonics.
    Sreekanth KV; Medwal R; Das CM; Gupta M; Mishra M; Yong KT; Rawat RS; Singh R
    Nano Lett; 2021 May; 21(9):4044-4050. PubMed ID: 33900781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material.
    Kats MA; Blanchard R; Genevet P; Yang Z; Qazilbash MM; Basov DN; Ramanathan S; Capasso F
    Opt Lett; 2013 Feb; 38(3):368-70. PubMed ID: 23381440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material.
    Zhang Y; Fowler C; Liang J; Azhar B; Shalaginov MY; Deckoff-Jones S; An S; Chou JB; Roberts CM; Liberman V; Kang M; Ríos C; Richardson KA; Rivero-Baleine C; Gu T; Zhang H; Hu J
    Nat Nanotechnol; 2021 Jun; 16(6):661-666. PubMed ID: 33875868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.