These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38085952)

  • 1. Substrate Positioning Dynamics Involves a Non-Electrostatic Component to Mediate Catalysis.
    Jiang Y; Ding N; Shao Q; Stull SL; Cheng Z; Yang ZJ
    J Phys Chem Lett; 2023 Dec; 14(50):11480-11489. PubMed ID: 38085952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Catalytic Activity of Synthetic Enzyme KE15 with DNA.
    Zheng Y; Vaissier Welborn V
    J Phys Chem B; 2022 May; 126(18):3407-3413. PubMed ID: 35483007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remarkable rate enhancement of orotidine 5'-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization.
    Warshel A; Strajbl M; Villà J; Florián J
    Biochemistry; 2000 Dec; 39(48):14728-38. PubMed ID: 11101287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of long-range electrostatic interactions to 4-chlorobenzoyl-CoA dehalogenase catalysis: a combined theoretical and experimental study.
    Wu J; Xu D; Lu X; Wang C; Guo H; Dunaway-Mariano D
    Biochemistry; 2006 Jan; 45(1):102-12. PubMed ID: 16388585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical nature of intermolecular interactions within cAMP-dependent protein kinase active site: differential transition state stabilization in phosphoryl transfer reaction.
    Szarek P; Dyguda-Kazimierowicz E; Tachibana A; Sokalski WA
    J Phys Chem B; 2008 Sep; 112(37):11819-26. PubMed ID: 18720966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.
    Szefczyk B; Mulholland AJ; Ranaghan KE; Sokalski WA
    J Am Chem Soc; 2004 Dec; 126(49):16148-59. PubMed ID: 15584751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How much do enzymes really gain by restraining their reacting fragments?
    Shurki A; Strajbl M; Villà J; Warshel A
    J Am Chem Soc; 2002 Apr; 124(15):4097-107. PubMed ID: 11942849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.
    Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ
    Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Dynamics Support Electrostatic Interactions in the Active Site of Adenylate Kinase.
    Lawal MM; Vaissier Welborn V
    Chembiochem; 2022 May; 23(10):e202200097. PubMed ID: 35303385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apparent NAC effect in chorismate mutase reflects electrostatic transition state stabilization.
    Strajbl M; Shurki A; Kato M; Warshel A
    J Am Chem Soc; 2003 Aug; 125(34):10228-37. PubMed ID: 12926945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical modeling of enzyme catalytic power: analysis of "cratic" and electrostatic factors in catechol O-methyltransferase.
    Roca M; Martí S; Andrés J; Moliner V; Tuñón I; Bertrán J; Williams IH
    J Am Chem Soc; 2003 Jun; 125(25):7726-37. PubMed ID: 12812514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of multiple active site configurations in a designed enzyme.
    Hong NS; Petrović D; Lee R; Gryn'ova G; Purg M; Saunders J; Bauer P; Carr PD; Lin CY; Mabbitt PD; Zhang W; Altamore T; Easton C; Coote ML; Kamerlin SCL; Jackson CJ
    Nat Commun; 2018 Sep; 9(1):3900. PubMed ID: 30254369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
    Khersonsky O; Röthlisberger D; Wollacott AM; Murphy P; Dym O; Albeck S; Kiss G; Houk KN; Baker D; Tawfik DS
    J Mol Biol; 2011 Apr; 407(3):391-412. PubMed ID: 21277311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.
    Liu CT; Layfield JP; Stewart RJ; French JB; Hanoian P; Asbury JB; Hammes-Schiffer S; Benkovic SJ
    J Am Chem Soc; 2014 Jul; 136(29):10349-60. PubMed ID: 24977791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic contributions to binding of transition state analogues can be very different from the corresponding contributions to catalysis: phenolates binding to the oxyanion hole of ketosteroid isomerase.
    Warshel A; Sharma PK; Chu ZT; Aqvist J
    Biochemistry; 2007 Feb; 46(6):1466-76. PubMed ID: 17279612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis.
    Hur S; Bruice TC
    J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulations of the catalytic mechanism of wild-type and mutant β-phosphoglucomutase.
    Barrozo A; Liao Q; Esguerra M; Marloie G; Florián J; Williams NH; Kamerlin SCL
    Org Biomol Chem; 2018 Mar; 16(12):2060-2073. PubMed ID: 29508879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of chorismate mutase catalysis by QM/MM modelling of enzyme-catalysed and uncatalysed reactions.
    Claeyssens F; Ranaghan KE; Lawan N; Macrae SJ; Manby FR; Harvey JN; Mulholland AJ
    Org Biomol Chem; 2011 Mar; 9(5):1578-90. PubMed ID: 21243152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.