These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38086115)

  • 41. Improved mapping of coastal salt marsh habitat change at Barnegat Bay (NJ, USA) using object-based image analysis of high-resolution aerial imagery.
    Krause JR; Oczkowski AJ; Watson EB
    Remote Sens Appl; 2023 Jan; 29():1-11. PubMed ID: 37235064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Herbivory drives the spread of salt marsh die-off.
    Bertness MD; Brisson CP; Bevil MC; Crotty SM
    PLoS One; 2014; 9(3):e92916. PubMed ID: 24651837
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.
    Leonardi N; Ganju NK; Fagherazzi S
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):64-8. PubMed ID: 26699461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Implementing adaptive management into a climate change adaptation strategy for a drowning New England salt marsh.
    Perry DC; Chaffee C; Wigand C; Thornber C
    J Environ Manage; 2020 Sep; 270():110928. PubMed ID: 32721353
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluating regional resiliency of coastal wetlands to sea level rise through hypsometry-based modeling.
    Doughty CL; Cavanaugh KC; Ambrose RF; Stein ED
    Glob Chang Biol; 2019 Jan; 25(1):78-92. PubMed ID: 30378214
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Global hotspots of salt marsh change and carbon emissions.
    Campbell AD; Fatoyinbo L; Goldberg L; Lagomasino D
    Nature; 2022 Dec; 612(7941):701-706. PubMed ID: 36450979
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change.
    Osland MJ; Enwright NM; Day RH; Gabler CA; Stagg CL; Grace JB
    Glob Chang Biol; 2016 Jan; 22(1):1-11. PubMed ID: 26342186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Presence of the Herbaceous Marsh Species
    Stagg CL; Laurenzano C; Vervaeke WC; Krauss KW; McKee KL
    Plants (Basel); 2022 May; 11(9):. PubMed ID: 35567260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling vegetation community responses to sea-level rise on Barrier Island systems: A case study on the Cape Canaveral Barrier Island complex, Florida, USA.
    Foster TE; Stolen ED; Hall CR; Schaub R; Duncan BW; Hunt DK; Drese JH
    PLoS One; 2017; 12(8):e0182605. PubMed ID: 28796807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Centuries of human-driven change in salt marsh ecosystems.
    Gedan KB; Silliman BR; Bertness MD
    Ann Rev Mar Sci; 2009; 1():117-41. PubMed ID: 21141032
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential impacts and management implications of climate change on Tampa Bay estuary critical coastal habitats.
    Sherwood ET; Greening HS
    Environ Manage; 2014 Feb; 53(2):401-15. PubMed ID: 24122098
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Runnels mitigate marsh drowning in microtidal salt marshes.
    Watson EB; Ferguson W; Champlin LK; White JD; Ernst N; Sylla HA; Wilburn BP; Wigand C
    Front Environ Sci; 2022 Nov; 10():1-17. PubMed ID: 36507472
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coastal eutrophication as a driver of salt marsh loss.
    Deegan LA; Johnson DS; Warren RS; Peterson BJ; Fleeger JW; Fagherazzi S; Wollheim WM
    Nature; 2012 Oct; 490(7420):388-92. PubMed ID: 23075989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Embedding the value of coastal ecosystem services into climate change adaptation planning.
    Wedding LM; Reiter S; Moritsch M; Hartge E; Reiblich J; Gourlie D; Guerry A
    PeerJ; 2022; 10():e13463. PubMed ID: 36032941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluating the role of coastal habitats and sea-level rise in hurricane risk mitigation: An ecological economic assessment method and application to a business decision.
    Reddy SM; Guannel G; Griffin R; Faries J; Boucher T; Thompson M; Brenner J; Bernhardt J; Verutes G; Wood SA; Silver JA; Toft J; Rogers A; Maas A; Guerry A; Molnar J; DiMuro JL
    Integr Environ Assess Manag; 2016 Apr; 12(2):328-44. PubMed ID: 26123999
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Salt marsh monitoring along the mid-Atlantic coast by Google Earth Engine enabled time series.
    Campbell AD; Wang Y
    PLoS One; 2020; 15(2):e0229605. PubMed ID: 32109951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Living shorelines can enhance the nursery role of threatened estuarine habitats.
    Gittman RK; Peterson CH; Currin CA; Fodrie FJ; Piehler MF; Bruno JF
    Ecol Appl; 2016 Jan; 26(1):249-63. PubMed ID: 27039523
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling net ecosystem carbon balance and loss in coastal wetlands exposed to sea-level rise and saltwater intrusion.
    Ishtiaq KS; Troxler TG; Lamb-Wotton L; Wilson BJ; Charles SP; Davis SE; Kominoski JS; Rudnick DT; Sklar FH
    Ecol Appl; 2022 Dec; 32(8):e2702. PubMed ID: 35751522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Soil microbial community development across a 32-year coastal wetland restoration time series and the relative importance of environmental factors.
    Abbott KM; Quirk T; Fultz LM
    Sci Total Environ; 2022 May; 821():153359. PubMed ID: 35081409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.