These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38086487)

  • 21. Efficient Removal of Butachlor and Change in Microbial Community Structure in Single-Chamber Microbial Fuel Cells.
    Li X; Li Y; Zhao L; Sun Y; Zhang X; Chen X; Weng L; Li Y
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31618815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of Cu2+ on the power output of dual-chamber microbial fuel cell].
    Mu SJ; Li XF; Ren YP; Wang XH
    Huan Jing Ke Xue; 2014 Jul; 35(7):2791-7. PubMed ID: 25244870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cathodic selenium recovery in bioelectrochemical system: Regulatory influence on anodic electrogenic activity.
    Sravan JS; Nancharaiah YV; Lens PNL; Mohan SV
    J Hazard Mater; 2020 Nov; 399():122843. PubMed ID: 32937693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemically active biofilms: facts and fiction. A review.
    Babauta J; Renslow R; Lewandowski Z; Beyenal H
    Biofouling; 2012; 28(8):789-812. PubMed ID: 22856464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling the electrocatalytic dechlorination of 2,4-D with electroactive microbial anodes.
    Leon-Fernandez LF; Dominguez-Benetton X; Villaseñor Camacho J; Fernandez-Morales FJ
    Environ Microbiol Rep; 2023 Dec; 15(6):512-529. PubMed ID: 37482917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in bioelectrochemical systems for bio-products recovery.
    Singh NK; Mathuriya AS; Mehrotra S; Pandit S; Singh A; Jadhav D
    Environ Technol; 2024 Aug; 45(19):3853-3876. PubMed ID: 37491760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells.
    Saba B; Christy AD; Yu Z; Co AC; Islam R; Tuovinen OH
    Bioelectrochemistry; 2017 Feb; 113():79-84. PubMed ID: 27816024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anode Surface Bioaugmentation Enhances Deterministic Biofilm Assembly in Microbial Fuel Cells.
    Yanuka-Golub K; Dubinsky V; Korenblum E; Reshef L; Ofek-Lalzar M; Rishpon J; Gophna U
    mBio; 2021 Mar; 12(2):. PubMed ID: 33653887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Damage of anodic biofilms by high salinity deteriorates PAHs degradation in single-chamber microbial electrolysis cell reactor.
    Ding P; Wu P; Jie Z; Cui MH; Liu H
    Sci Total Environ; 2021 Jul; 777():145752. PubMed ID: 33684746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Explore the difference between the single-chamber and dual-chamber microbial electrosynthesis for biogas production performance.
    Wang H; Du H; Zeng S; Pan X; Cheng H; Liu L; Luo F
    Bioelectrochemistry; 2021 Apr; 138():107726. PubMed ID: 33421897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitigation of tannery effluent with simultaneous generation of bioenergy using dual chambered microbial fuel cell.
    Chauhan S; Sharma V; Varjani S; Sindhu R; Chaturvedi Bhargava P
    Bioresour Technol; 2022 May; 351():127084. PubMed ID: 35358671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation.
    Kardi SN; Ibrahim N; Rashid NAA; Darzi GN
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater.
    Erable B; Etcheverry L; Bergel A
    Biofouling; 2011 Mar; 27(3):319-26. PubMed ID: 21409654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel single chamber vertical baffle flow biocathode microbial electrochemical system with microbial separator.
    Liu S; Feng Y; Niu J; Liu J; Li N; He W
    Bioresour Technol; 2019 Dec; 294():122236. PubMed ID: 31610499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrografted anthraquinone to monitor pH at the biofilm-anode interface in a wastewater microbial fuel cell.
    Costa NL; Olorounto G; Lebègue E; Barrière F
    Colloids Surf B Biointerfaces; 2022 Feb; 210():112274. PubMed ID: 34894599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations.
    Escapa A; San-Martín MI; Mateos R; Morán A
    Bioresour Technol; 2015 Mar; 180():72-8. PubMed ID: 25590425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial community composition is unaffected by anode potential.
    Zhu X; Yates MD; Hatzell MC; Ananda Rao H; Saikaly PE; Logan BE
    Environ Sci Technol; 2014 Jan; 48(2):1352-8. PubMed ID: 24364567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field tests of cubic-meter scale microbial electrochemical system in a municipal wastewater treatment plant.
    He W; Dong Y; Li C; Han X; Liu G; Liu J; Feng Y
    Water Res; 2019 May; 155():372-380. PubMed ID: 30856521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen production from lignocellulosic hydrolysate in an up-scaled microbial electrolysis cell with stacked bio-electrodes.
    Wang L; Long F; Liang D; Xiao X; Liu H
    Bioresour Technol; 2021 Jan; 320(Pt A):124314. PubMed ID: 33147527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality.
    Deng S; Wang C; Ngo HH; Guo W; You N; Tang H; Yu H; Tang L; Han J
    Bioresour Technol; 2023 May; 376():128906. PubMed ID: 36933575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.