BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38086645)

  • 21. Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime.
    Bilal RMH; Saeed MA; Choudhury PK; Baqir MA; Kamal W; Ali MM; Rahim AA
    Sci Rep; 2020 Aug; 10(1):14035. PubMed ID: 32820192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.
    Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H
    RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance.
    Zhang C; Huang C; Pu M; Song J; Zhao Z; Wu X; Luo X
    Sci Rep; 2017 Jul; 7(1):5652. PubMed ID: 28720892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Polarization-Insensitive and Wide-Angle Terahertz Absorber with Ring-Porous Patterned Graphene Metasurface.
    Shen H; Liu F; Liu C; Zeng D; Guo B; Wei Z; Wang F; Tan C; Huang X; Meng H
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Triangular metallic ring-shaped broadband polarization-insensitive and wide-angle metamaterial absorber for visible regime.
    Bilal RMH; Baqir MA; Hameed M; Naqvi SA; Ali MM
    J Opt Soc Am A Opt Image Sci Vis; 2022 Jan; 39(1):136-142. PubMed ID: 35200983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical Study of Ultra-Broadband Metamaterial Perfect Absorber Based on Four-Corner Star Array.
    Cheng Y; Xiong M; Chen M; Deng S; Liu H; Teng C; Yang H; Deng H; Yuan L
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators.
    Qin Z; Meng D; Yang F; Shi X; Liang Z; Xu H; Smith DR; Liu Y
    Opt Express; 2021 Jun; 29(13):20275-20285. PubMed ID: 34266120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-Wideband and Wide-Angle Perfect Solar Energy Absorber Based on Titanium and Silicon Dioxide Colloidal Nanoarray Structure.
    Wu P; Wei K; Xu D; Chen M; Zeng Y; Jian R
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption.
    Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R
    Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Broadband long-wave infrared high-absorption of active materials through hybrid plasmonic resonance modes.
    Liu X; Zhang Z; Han C; Wu J; Zhang X; Zhou H; Xie Q; Wang J
    Discov Nano; 2023 Mar; 18(1):35. PubMed ID: 36884144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. All-Silicon Polarization-Insensitive Metamaterial Absorber in the Terahertz Range.
    Xu Z; Li Y; Han B; Wang Y; Yuan Q; Li Y; He W; Hao J; Wu L; Yao J
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Broadband Bi-Directional Polarization-Insensitive Metamaterial Absorber.
    Tian F; Ma X; Hao H; Li X; Fan J; Guo L; Huang X
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamically changeable terahertz metamaterial absorbers with intelligent switch and high sensitivity and wide and narrow band perfect absorption.
    Zhao Q; Yi Z; Bian L; Liu H; Yang H; Cheng S; Li G; Zeng L; Li H; Wu P
    Phys Chem Chem Phys; 2023 Aug; 25(30):20706-20714. PubMed ID: 37489769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and optimization of broadband metamaterial absorber based on manganese for visible applications.
    Sayed SI; Mahmoud KR; Mubarak RI
    Sci Rep; 2023 Jul; 13(1):11937. PubMed ID: 37488131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-Wideband and Narrowband Switchable, Bi-Functional Metamaterial Absorber Based on Vanadium Dioxide.
    Wang X; Liu Y; Jia Y; Su N; Wu Q
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene.
    Huang ML; Cheng YZ; Cheng ZZ; Chen HR; Mao XS; Gong RZ
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.