BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 38086723)

  • 1. [Status of 3D Printing Technology for Preparing Bioceramic Materials].
    Zhang J; Li M; Tang B; Dong H; Yu Q
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 Nov; 47(6):651-658. PubMed ID: 38086723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed porous ceramic scaffolds for bone tissue engineering: a review.
    Wen Y; Xun S; Haoye M; Baichuan S; Peng C; Xuejian L; Kaihong Z; Xuan Y; Jiang P; Shibi L
    Biomater Sci; 2017 Aug; 5(9):1690-1698. PubMed ID: 28686244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering.
    Zhang J; Huang D; Liu S; Dong X; Li Y; Zhang H; Yang Z; Su Q; Huang W; Zheng W; Zhou W
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110054. PubMed ID: 31546401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties.
    Zhu Y; Liu K; Deng J; Ye J; Ai F; Ouyang H; Wu T; Jia J; Cheng X; Wang X
    Int J Nanomedicine; 2019; 14():5977-5987. PubMed ID: 31534332
    [No Abstract]   [Full Text] [Related]  

  • 8. Support-less ceramic 3D printing of bioceramic structures using a hydrogel bath.
    Raja N; Park H; Gal CW; Sung A; Choi YJ; Yun HS
    Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36996843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.
    Chang CH; Lin CY; Liu FH; Chen MH; Lin CP; Ho HN; Liao YS
    PLoS One; 2015; 10(11):e0143713. PubMed ID: 26618362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printing of Large-Scale, High-Resolution Bioceramics with Micronano Inner Porosity and Customized Surface Characterization Design for Bone Regeneration.
    Zhang B; Gui X; Song P; Xu X; Guo L; Han Y; Wang L; Zhou C; Fan Y; Zhang X
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):8804-8815. PubMed ID: 35156367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds.
    Yang Z; Xue J; Li T; Zhai D; Yu X; Huan Z; Wu C
    Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35417888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-ceramic bond strength of a cobalt chromium alloy for dental prosthetic restorations with a porous structure using metal 3D printing.
    Wang H; Lim JY
    Comput Biol Med; 2019 Sep; 112():103364. PubMed ID: 31369941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of 'surgery-friendly' bone scaffold characteristics: 3D printed ductile BG/PCL scaffold with high inorganic content to repair critical bone defects.
    Huang P; Yang P; Liu K; Tao W; Tao J; Ai F
    Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36317271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of Bioceramic Scaffolds-Barriers to the Clinical Translation: From Promise to Reality, and Future Perspectives.
    Lin K; Sheikh R; Romanazzo S; Roohani I
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review on vat photopolymerization additive manufacturing of bioactive ceramic bone scaffolds.
    Guo W; Li B; Li P; Zhao L; You H; Long Y
    J Mater Chem B; 2023 Oct; 11(40):9572-9596. PubMed ID: 37727909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production.
    Marques A; Miranda G; Silva F; Pinto P; Carvalho Ó
    J Biomed Mater Res B Appl Biomater; 2021 Mar; 109(3):377-393. PubMed ID: 32924277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique.
    Dong X; Heidari A; Mansouri A; Hao WS; Dehghani M; Saber-Samandari S; Toghraie D; Khandan A
    J Mech Behav Biomed Mater; 2021 Sep; 121():104643. PubMed ID: 34139482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.