BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 38086723)

  • 21. A simple and fast method for screening production of polymer-ceramic filaments for bone implant printing using commercial fused deposition modelling 3D printers.
    Podgórski R; Wojasiński M; Trepkowska-Mejer E; Ciach T
    Biomater Adv; 2023 Mar; 146():213317. PubMed ID: 36738523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair.
    Lin H; Zhang L; Zhang Q; Wang Q; Wang X; Yan G
    Biomater Sci; 2023 Oct; 11(21):7034-7050. PubMed ID: 37782081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption.
    Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():975-986. PubMed ID: 30274136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING POROUS SCAFFOLDS FOR BONE TISSUE ENGINEERING].
    Wu T; Yang C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):509-13. PubMed ID: 27411283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function.
    Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C
    Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application.
    Zhao W; Yue C; Liu L; Liu Y; Leng J
    Adv Healthc Mater; 2023 Jun; 12(16):e2201975. PubMed ID: 36520058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering.
    Sun F; Sun X; Wang H; Li C; Zhao Y; Tian J; Lin Y
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering.
    Seitz H; Rieder W; Irsen S; Leukers B; Tille C
    J Biomed Mater Res B Appl Biomater; 2005 Aug; 74(2):782-8. PubMed ID: 15981173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sintering densification mechanism and mechanical properties of the 3D-printed high-melting-point-difference magnesium oxide/calcium phosphate composite bio-ceramic scaffold.
    Ge M; Xie D; Yang Y; Tian Z
    J Mech Behav Biomed Mater; 2023 Aug; 144():105978. PubMed ID: 37339536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Printed Composite Scaffolds in Bone Tissue Engineering: A Systematic Review.
    Mohaghegh S; Hosseini SF; Rad MR; Khojasteh A
    Curr Stem Cell Res Ther; 2022; 17(7):648-709. PubMed ID: 35135465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D Printed SiOC(N) Ceramic Scaffolds for Bone Tissue Regeneration: Improved Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells.
    Yang Y; Kulkarni A; Soraru GD; Pearce JM; Motta A
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printable magnesium-based cements towards the preparation of bioceramics.
    Tonelli M; Faralli A; Ridi F; Bonini M
    J Colloid Interface Sci; 2021 Sep; 598():24-35. PubMed ID: 33892441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Personalized 3D printed bone scaffolds: A review.
    Mirkhalaf M; Men Y; Wang R; No Y; Zreiqat H
    Acta Biomater; 2023 Jan; 156():110-124. PubMed ID: 35429670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Additively manufactured BaTiO
    Mancuso E; Shah L; Jindal S; Serenelli C; Tsikriteas ZM; Khanbareh H; Tirella A
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112192. PubMed ID: 34082989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.
    Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K
    Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printing of Bioceramics for Bone Tissue Engineering.
    Zafar MJ; Zhu D; Zhang Z
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical properties and wear behaviors analysis of fluorapatite glass-ceramics based on stereolithography 3D printing.
    Yang B; Wang S; Wang G; Yang X
    J Mech Behav Biomed Mater; 2021 Dec; 124():104859. PubMed ID: 34607301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and in vitro evaluation of 3D printed porous silicate substituted calcium phosphate scaffolds for bone tissue engineering.
    Chen D; Chen G; Zhang X; Chen J; Li J; Kang K; He W; Kong Y; Wu L; Su B; Zhao K; Si D; Wang X
    Biotechnol Bioeng; 2022 Nov; 119(11):3297-3310. PubMed ID: 35923072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.