These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38086824)

  • 1. A microscopic Kondo lattice model for the heavy fermion antiferromagnet CeIn
    Simeth W; Wang Z; Ghioldi EA; Fobes DM; Podlesnyak A; Sung NH; Bauer ED; Lass J; Flury S; Vonka J; Mazzone DG; Niedermayer C; Nomura Y; Arita R; Batista CD; Ronning F; Janoschek M
    Nat Commun; 2023 Dec; 14(1):8239. PubMed ID: 38086824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling unconventional superconductivity in artificially engineered
    Naritsuka M; Terashima T; Matsuda Y
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33946054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial heavy fermions in a van der Waals heterostructure.
    Vaňo V; Amini M; Ganguli SC; Chen G; Lado JL; Kezilebieke S; Liljeroth P
    Nature; 2021 Nov; 599(7886):582-586. PubMed ID: 34819682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Kondo lattices to Kondo superlattices.
    Shimozawa M; Goh SK; Shibauchi T; Matsuda Y
    Rep Prog Phys; 2016 Jul; 79(7):074503. PubMed ID: 27275757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nature of the Unconventional Heavy-Fermion Kondo State in Monolayer CeSiI.
    Fumega AO; Lado JL
    Nano Lett; 2024 Apr; 24(14):4272-4278. PubMed ID: 38394370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
    Steglich F; Wirth S
    Rep Prog Phys; 2016 Aug; 79(8):084502. PubMed ID: 27376190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for ground state coherence in a two-dimensional Kondo lattice.
    Wan W; Harsh R; Meninno A; Dreher P; Sajan S; Guo H; Errea I; de Juan F; Ugeda MM
    Nat Commun; 2023 Nov; 14(1):7005. PubMed ID: 37919299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnon Bose-Einstein condensation and superconductivity in a frustrated Kondo lattice.
    Volkov PA; Gazit S; Pixley JH
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20462-20467. PubMed ID: 32788363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2.
    Ernst S; Kirchner S; Krellner C; Geibel C; Zwicknagl G; Steglich F; Wirth S
    Nature; 2011 Jun; 474(7351):362-6. PubMed ID: 21677755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orbital-Selective Kondo Entanglement and Antiferromagnetic Order in USb_{2}.
    Chen QY; Luo XB; Xie DH; Li ML; Ji XY; Zhou R; Huang YB; Zhang W; Feng W; Zhang Y; Huang L; Hao QQ; Liu Q; Zhu XG; Liu Y; Zhang P; Lai XC; Si Q; Tan SY
    Phys Rev Lett; 2019 Sep; 123(10):106402. PubMed ID: 31573295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weyl-Kondo semimetal in heavy-fermion systems.
    Lai HH; Grefe SE; Paschen S; Si Q
    Proc Natl Acad Sci U S A; 2018 Jan; 115(1):93-97. PubMed ID: 29255021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kondo interaction in FeTe and its potential role in the magnetic order.
    Kim Y; Kim MS; Kim D; Kim M; Kim M; Cheng CM; Choi J; Jung S; Lu D; Kim JH; Cho S; Song D; Oh D; Yu L; Choi YJ; Kim HD; Han JH; Jo Y; Shim JH; Seo J; Huh S; Kim C
    Nat Commun; 2023 Jul; 14(1):4145. PubMed ID: 37438375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Migdal-Eliashberg superconductivity in a Kondo lattice.
    Awelewa S; Dzero M
    J Phys Condens Matter; 2024 May; 36(32):. PubMed ID: 38663412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kondo Holes in the Two-Dimensional Itinerant Ising Ferromagnet Fe
    Zhao M; Chen BB; Xi Y; Zhao Y; Xu H; Zhang H; Cheng N; Feng H; Zhuang J; Pan F; Xu X; Hao W; Li W; Zhou S; Dou SX; Du Y
    Nano Lett; 2021 Jul; 21(14):6117-6123. PubMed ID: 34279960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orbital-selective Kondo lattice and enigmatic
    Giannakis I; Leshen J; Kavai M; Ran S; Kang CJ; Saha SR; Zhao Y; Xu Z; Lynn JW; Miao L; Wray LA; Kotliar G; Butch NP; Aynajian P
    Sci Adv; 2019 Oct; 5(10):eaaw9061. PubMed ID: 31667341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent change of the electronic structure in the Kondo lattice system YbRh
    Agustsson SY; Chernov SV; Medjanik K; Babenkov S; Fedchenko O; Vasilyev D; Schlueter C; Gloskovskii A; Matveyev Y; Kliemt K; Krellner C; Demsar J; Schönhense G; Elmers HJ
    J Phys Condens Matter; 2021 Apr; 33(20):. PubMed ID: 33561846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metals.
    Steglich F; Arndt J; Stockert O; Friedemann S; Brando M; Klingner C; Krellner C; Geibel C; Wirth S; Kirchner S; Si Q
    J Phys Condens Matter; 2012 Jul; 24(29):294201. PubMed ID: 22773300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconventional quantum criticality in the pressure-induced heavy-fermion superconductor CeRhIn₅.
    Park T; Sidorov VA; Lee H; Ronning F; Bauer ED; Sarrao JL; Thompson JD
    J Phys Condens Matter; 2011 Mar; 23(9):094218. PubMed ID: 21339571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competing topological and Kondo insulator phases on a honeycomb lattice.
    Feng XY; Dai J; Chung CH; Si Q
    Phys Rev Lett; 2013 Jul; 111(1):016402. PubMed ID: 23863017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotropic quantum scattering and unconventional superconductivity.
    Park T; Sidorov VA; Ronning F; Zhu JX; Tokiwa Y; Lee H; Bauer ED; Movshovich R; Sarrao JL; Thompson JD
    Nature; 2008 Nov; 456(7220):366-8. PubMed ID: 19020616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.