BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38087401)

  • 1. Experimental and Computational Investigation of Microbubble Formation in a Single Capillary Embedded T-junction Microfluidic Device.
    Khan AH; Ganguli A; Edirisinghe M; Dalvi SV
    Langmuir; 2023 Dec; 39(51):18971-18982. PubMed ID: 38087401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation.
    Khan AH; Jiang X; Kaushik A; Nair HS; Edirisinghe M; Mercado-Shekhar KP; Shekhar H; Dalvi SV
    Langmuir; 2022 Aug; 38(33):10288-10304. PubMed ID: 35943351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Speed Generation of Microbubbles with Constant Cumulative Production in a Glass Capillary Microfluidic Bubble Generator.
    Yu J; Cheng W; Ni J; Li C; Su X; Yan H; Bao F; Hou L
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles.
    Dhanaliwala AH; Chen JL; Wang S; Hossack JA
    Microfluid Nanofluidics; 2013 Mar; 14(3-4):457-467. PubMed ID: 23439786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Preparation of Monodisperse Microbubbles by Integrating Oscillating Electric Fields with Microfluidics.
    Kothandaraman A; Harker A; Ventikos Y; Edirisinghe M
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micropipette-Based Microfluidic Device for Monodisperse Microbubbles Generation.
    Toshiyuki Matsumi C; José da Silva W; Kurt Schneider F; Miguel Maia J; E M Morales R; Duarte Araújo Filho W
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic targeting to enhance microbubble delivery in an occluded microarterial bifurcation.
    de Saint Victor M; Carugo D; Barnsley LC; Owen J; Coussios CC; Stride E
    Phys Med Biol; 2017 Sep; 62(18):7451-7470. PubMed ID: 28796644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating Lifetime-Enhanced Microbubbles by Decorating Shells with Silicon Quantum Nano-Dots Using a 3-Series T-Junction Microfluidic Device.
    Wu B; Luo CJ; Palaniappan A; Jiang X; Gultekinoglu M; Ulubayram K; Bayram C; Harker A; Shirahata N; Khan AH; Dalvi SV; Edirisinghe M
    Langmuir; 2022 Sep; 38(36):10917-10933. PubMed ID: 36018789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing In Vitro Stability of Albumin Microbubbles Produced Using Microfluidic T-Junction Device.
    Khan AH; Surwase S; Jiang X; Edirisinghe M; Dalvi SV
    Langmuir; 2022 May; 38(17):5052-5062. PubMed ID: 34264681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigation of a technique to produce microbubbles by a microfluidic T junction.
    Herrada MA; Gañán-Calvo AM; Montanero JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033027. PubMed ID: 24125364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device.
    Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E
    J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbubbles as Heterogeneous Nucleation Sites for Crystallization in Continuous Microfluidic Devices.
    Fatemi N; Dong Z; Van Gerven T; Kuhn S
    Langmuir; 2019 Jan; 35(1):60-69. PubMed ID: 30525658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles.
    Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA
    Lab Chip; 2018 Aug; 18(17):2653-2664. PubMed ID: 30070301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-loop feedback control of microbubble diameter from a flow-focusing microfluidic device.
    Xie Y; Dixon AJ; Rickel JMR; Klibanov AL; Hossack JA
    Biomicrofluidics; 2020 May; 14(3):034101. PubMed ID: 32454925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Mixing Region Geometry and Collector Distance on Microbubble Formation in a Microfluidic Device Coupled with ac-dc Electric Fields.
    Kothandaraman A; Alfadhl Y; Qureshi M; Edirisinghe M; Ventikos Y
    Langmuir; 2019 Aug; 35(31):10052-10060. PubMed ID: 30995839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel gas embolotherapy using microbubbles electrocoalescence for cancer treatment.
    Sormoli HA; Mojra A; Heidarinejad G
    Comput Methods Programs Biomed; 2024 Feb; 244():107953. PubMed ID: 38043501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force and torque on spherical particles in micro-channel flows using computational fluid dynamics.
    Suo J; Edwards EE; Anilkumar A; Sulchek T; Giddens DP; Thomas SN
    R Soc Open Sci; 2016 Jul; 3(7):160298. PubMed ID: 27493783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Yielding Microbubble Production Method.
    Fiabane J; Prentice P; Pancholi K
    Biomed Res Int; 2016; 2016():3572827. PubMed ID: 27034935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superharmonic microbubble Doppler effect in ultrasound therapy.
    Pouliopoulos AN; Choi JJ
    Phys Med Biol; 2016 Aug; 61(16):6154-71. PubMed ID: 27469394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.