These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38087524)

  • 1. High power Raman second stokes generation in a methane filled hollow core fiber.
    Lanari AM; Mulvad HCH; Abokhamis Mousavi SM; Davidson IA; Fu Q; Horak P; Richardson DJ; Poletti F
    Opt Express; 2023 Dec; 31(25):41191-41201. PubMed ID: 38087524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber.
    Cao L; Gao SF; Peng ZG; Wang XC; Wang YY; Wang P
    Opt Express; 2018 Mar; 26(5):5609-5615. PubMed ID: 29529763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 0.83 W, single-pass, 1.54 μm gas Raman source generated in a CH
    Li Z; Huang W; Cui Y; Wang Z; Wu W
    Opt Express; 2018 May; 26(10):12522-12529. PubMed ID: 29801290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers.
    Mousavi SA; Mulvad HCH; Wheeler NV; Horak P; Hayes J; Chen Y; Bradley TD; Alam SU; Sandoghchi SR; Fokoua EN; Richardson DJ; Poletti F
    Opt Express; 2018 Apr; 26(7):8866-8882. PubMed ID: 29715848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers.
    Zhou Z; Tang N; Li Z; Huang W; Wang Z; Wu W; Hua W
    Opt Express; 2018 Jul; 26(15):19144-19153. PubMed ID: 30114175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8  μm.
    Li Z; Huang W; Cui Y; Wang Z
    Opt Lett; 2018 Oct; 43(19):4671-4674. PubMed ID: 30272711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascaded All-Fiber Gas Raman Laser Oscillator in Deuterium-Filled Hollow-Core Photonic Crystal Fibers.
    Li H; Pei W; Li X; Lei L; Shi J; Zhou Z; Wang Z
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source.
    Wang Z; Gu B; Chen Y; Li Z; Xi X
    Appl Opt; 2017 Sep; 56(27):7657-7661. PubMed ID: 29047745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient high power, narrow linewidth 1.9  μm fiber hydrogen Raman amplifier.
    Li Z; Huang W; Cui Y; Wang Z
    Appl Opt; 2018 May; 57(14):3902-3906. PubMed ID: 29791359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm.
    Chen Y; Wang Z; Li Z; Huang W; Xi X; Lu Q
    Opt Express; 2017 Aug; 25(17):20944-20949. PubMed ID: 29041770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsed fiber laser oscillator at 1.7 µm by stimulated Raman scattering in H
    Pei W; Li H; Huang W; Wang M; Wang Z
    Opt Express; 2021 Oct; 29(21):33915-33925. PubMed ID: 34809192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral-temporal dynamics of high power Raman picosecond pulse using H
    Benoît A; Ilinova E; Beaudou B; Debord B; Gérôme F; Benabid F
    Opt Lett; 2017 Oct; 42(19):3896-3899. PubMed ID: 28957155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth.
    Chen Y; Wang Z; Gu B; Yu F; Lu Q
    Opt Lett; 2016 Nov; 41(21):5118-5121. PubMed ID: 27805698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4.3 µm high-power amplified spontaneous emission fiber source based on CO
    Song W; Yao J; Zhang X; Zhang Q; Hou Y; Wu J; Wang P
    Opt Express; 2024 Apr; 32(8):14532-14540. PubMed ID: 38859395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering.
    Cui Y; Huang W; Li Z; Zhou Z; Wang Z
    Opt Express; 2019 Oct; 27(21):30396-30404. PubMed ID: 31684287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber.
    Benabid F; Knight JC; Antonopoulos G; Russell PS
    Science; 2002 Oct; 298(5592):399-402. PubMed ID: 12376698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-wavelength high-energy gas-filled fiber Raman laser spanning from 1.53  µm to 2.4  µm.
    Adamu AI; Wang Y; Habib MS; Dasa MK; Antonio-Lopez JE; Amezcua-Correa R; Bang O; Markos C
    Opt Lett; 2021 Feb; 46(3):452-455. PubMed ID: 33528382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multioctave supercontinuum from visible to mid-infrared and bend effects on ultrafast nonlinear dynamics in gas-filled hollow-core fiber.
    Habib MS; Markos C; Antonio-Lopez JE; Amezcua-Correa R
    Appl Opt; 2019 May; 58(13):D7-D11. PubMed ID: 31044814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Fiber Tunable Pulsed 1.7 μm Fiber Lasers Based on Stimulated Raman Scattering of Hydrogen Molecules in Hollow-Core Fibers.
    Pei W; Li H; Huang W; Wang M; Wang Z
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-ppm gas phase Raman spectroscopy in an anti-resonant hollow core fiber.
    Kelly TW; Davidson IA; Warren C; Brooks WSM; Foster MJ; Poletti F; Richardson DJ; Horak P; Wheeler NV
    Opt Express; 2022 Nov; 30(24):43317-43329. PubMed ID: 36523032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.