These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38087780)

  • 1. Quantifying both viscoelasticity and surface tension: Why sharp tips overestimate cell stiffness.
    Markova O; Clanet C; Husson J
    Biophys J; 2024 Jan; 123(2):210-220. PubMed ID: 38087780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Cell Mechanical Properties Using Microindentation.
    Husson J
    Methods Mol Biol; 2023; 2600():3-23. PubMed ID: 36587087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are elastic moduli of biological cells depth dependent or not? Another explanation using a contact mechanics model with surface tension.
    Ding Y; Wang J; Xu GK; Wang GF
    Soft Matter; 2018 Sep; 14(36):7534-7541. PubMed ID: 30152838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of cantilever tip geometry and contact model on AFM elasticity measurement of cells.
    Kulkarni SG; Pérez-Domínguez S; Radmacher M
    J Mol Recognit; 2023 Jul; 36(7):e3018. PubMed ID: 37025035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2002 Oct; 124(5):586-95. PubMed ID: 12405602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy.
    Stolz M; Raiteri R; Daniels AU; VanLandingham MR; Baschong W; Aebi U
    Biophys J; 2004 May; 86(5):3269-83. PubMed ID: 15111440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2000 Jun; 122(3):236-44. PubMed ID: 10923291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micropipette aspiration method for characterizing biological materials with surface energy.
    Ding Y; Wang GF; Feng XQ; Yu SW
    J Biomech; 2018 Oct; 80():32-36. PubMed ID: 30170840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measured pulmonary arterial tissue stiffness is highly sensitive to AFM indenter dimensions.
    Sicard D; Fredenburgh LE; Tschumperlin DJ
    J Mech Behav Biomed Mater; 2017 Oct; 74():118-127. PubMed ID: 28595103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the determination of elastic moduli of cells by AFM based indentation.
    Ding Y; Xu GK; Wang GF
    Sci Rep; 2017 Apr; 7():45575. PubMed ID: 28368053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of mechanical behavior of AFM silicon tips under mechanical load.
    Kopycinska-Mueller M; Gluch J; Köhler B
    Nanotechnology; 2016 Nov; 27(45):454001. PubMed ID: 27694699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aspiration of biological viscoelastic drops.
    Guevorkian K; Colbert MJ; Durth M; Dufour S; Brochard-Wyart F
    Phys Rev Lett; 2010 May; 104(21):218101. PubMed ID: 20867138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal contact stiffness of elastic solids covered with tensed membranes and its application in indentation tests of biological materials.
    Yuan W; Ding Y; Wang G
    Acta Biomater; 2023 Nov; 171():202-208. PubMed ID: 37690593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillating adhesive contacts between micron-scale tips and compliant polymers.
    Wahl KJ; Asif SA; Greenwood JA; Johnson KL
    J Colloid Interface Sci; 2006 Apr; 296(1):178-88. PubMed ID: 16168427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Verification of the Elastic Formula for the Aspirated Length of a Single Cell Considering the Size and Compressibility of Cell During Micropipette Aspiration.
    Li Y; Chen J; Wang L; Guo Y; Feng J; Chen W
    Ann Biomed Eng; 2018 Jul; 46(7):1026-1037. PubMed ID: 29637316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration.
    Zhao R; Wyss K; Simmons CA
    J Biomech; 2009 Dec; 42(16):2768-73. PubMed ID: 19765713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo.
    Guevorkian K; Maître JL
    Methods Cell Biol; 2017; 139():187-201. PubMed ID: 28215336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.
    Mijailovic AS; Qing B; Fortunato D; Van Vliet KJ
    Acta Biomater; 2018 Apr; 71():388-397. PubMed ID: 29477455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micropipette aspiration of substrate-attached cells to estimate cell stiffness.
    Oh MJ; Kuhr F; Byfield F; Levitan I
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips.
    Rico F; Roca-Cusachs P; Gavara N; Farré R; Rotger M; Navajas D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021914. PubMed ID: 16196611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.