These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38087958)

  • 1. High-throughput single-cell assay for precise measurement of the intrinsic mechanical properties and shape characteristics of red blood cells.
    Wei Q; Xiong Y; Ma Y; Liu D; Lu Y; Zhang S; Wang X; Huang H; Liu Y; Dao M; Gong X
    Lab Chip; 2024 Jan; 24(2):305-316. PubMed ID: 38087958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders.
    Guruprasad P; Mannino RG; Caruso C; Zhang H; Josephson CD; Roback JD; Lam WA
    Am J Hematol; 2019 Feb; 94(2):189-199. PubMed ID: 30417938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in red blood cell deformability during storage: a microfluidic approach.
    Cluitmans JC; Chokkalingam V; Janssen AM; Brock R; Huck WT; Bosman GJ
    Biomed Res Int; 2014; 2014():764268. PubMed ID: 25295273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A system for the high-throughput measurement of the shear modulus distribution of human red blood cells.
    Saadat A; Huyke DA; Oyarzun DI; Escobar PV; Øvreeide IH; Shaqfeh ESG; Santiago JG
    Lab Chip; 2020 Aug; 20(16):2927-2936. PubMed ID: 32648561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformability and intrinsic material properties of neonatal red blood cells.
    Linderkamp O; Nash GB; Wu PY; Meiselman HJ
    Blood; 1986 May; 67(5):1244-50. PubMed ID: 3697506
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Qiang Y; Liu J; Dao M; Du E
    Lab Chip; 2021 Sep; 21(18):3458-3470. PubMed ID: 34378625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
    Chang HY; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput and Label-Free Blood-on-a-Chip for Malaria Diagnosis.
    Kang YJ; Ha YR; Lee SJ
    Anal Chem; 2016 Mar; 88(5):2912-22. PubMed ID: 26845250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensional-Flow Impedance Cytometer for Contactless and Optics-Free Erythrocyte Deformability Analysis.
    Reale R; De Ninno A; Nepi T; Bisegna P; Caselli F
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):565-572. PubMed ID: 35939464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of osmolality on erythrocyte rheology and perfusion of an artificial microvascular network.
    Reinhart WH; Piety NZ; Goede JS; Shevkoplyas SS
    Microvasc Res; 2015 Mar; 98():102-7. PubMed ID: 25660474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis.
    Subramani K; Raju SP; Chu X; Warren M; Pandya CD; Hoda N; Fulzele S; Raju R
    Int Immunopharmacol; 2018 Dec; 65():244-247. PubMed ID: 30340103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [High throughput detection and characterization of red blood cells deformability by combining optical tweezers with microfluidic technique].
    Zhang M; Meng X; Zhu L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):848-854. PubMed ID: 33140609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of blood bank storage on the rheological properties of male and female donor red blood cells.
    Daly A; Raval JS; Waters JH; Yazer MH; Kameneva MV
    Clin Hemorheol Microcirc; 2014; 56(4):337-45. PubMed ID: 23818106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic analysis of red blood cell deformability.
    Guo Q; Duffy SP; Matthews K; Santoso AT; Scott MD; Ma H
    J Biomech; 2014 Jun; 47(8):1767-76. PubMed ID: 24767871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition.
    Renoux C; Faivre M; Bessaa A; Da Costa L; Joly P; Gauthier A; Connes P
    Sci Rep; 2019 May; 9(1):6771. PubMed ID: 31043643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
    Ahmed F; Mehrabadi M; Liu Z; Barabino GA; Aidun CK
    J Biomech Eng; 2018 Jun; 140(6):. PubMed ID: 29715334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.