BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38088)

  • 1. Formation of two metyrapone N-oxides by rat liver microsomes.
    De Graeve J; Gielen JE; Kahl GF; Tüttenberg KH; Kahl R; Maume B
    Drug Metab Dispos; 1979; 7(3):166-70. PubMed ID: 38088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings: Evidence for oxidative metabolism of metyrapone in rat liver microsomes.
    Kahl R; Tüttenberg KH; Niedermeier F; Kahl GF
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R44. PubMed ID: 4152363
    [No Abstract]   [Full Text] [Related]  

  • 3. The urinary metabolic profile of metyrapone in the rat. Identification of two novel isomeric metyrapol N-oxide metabolites.
    Usansky JI; Damani LA
    Drug Metab Dispos; 1992; 20(1):64-9. PubMed ID: 1346999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro metabolism of the antianxiety drug buspirone as a predictor of its metabolism in vivo.
    Jajoo HK; Blair IA; Klunk LJ; Mayol RF
    Xenobiotica; 1990 Aug; 20(8):779-86. PubMed ID: 2219961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolism of 1-phenyl-2-(N-methyl-N-furfurylamino)propane (furfenorex) in the rat in vivo and in vitro.
    Inoue T; Yasuda T; Suzuki S; Kishi T; Niwaguchi T
    Xenobiotica; 1986 Feb; 16(2):109-21. PubMed ID: 3962333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monooxygenase-mediated activation of chlorotrianisene (TACE) in covalent binding to rat hepatic microsomal proteins.
    Juedes MJ; Bulger WH; Kupfer D
    Drug Metab Dispos; 1987; 15(6):786-93. PubMed ID: 2893703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of metyrapone. III. Formation of an alpha-pyridone metabolite by rat hepatic soluble enzymes.
    Damani LA; Crooks PA; Cowan DA
    Drug Metab Dispos; 1981; 9(3):270-3. PubMed ID: 6113939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxidative metabolism of hydralazine by rat liver microsomes.
    LaCagnin LB; Colby HD; O'Donnell JP
    Drug Metab Dispos; 1986; 14(5):549-54. PubMed ID: 2876860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic and pulmonary microsomal metabolism of naphthalene to glutathione adducts: factors affecting the relative rates of conjugate formation.
    Buckpitt AR; Bahnson LS; Franklin RB
    J Pharmacol Exp Ther; 1984 Nov; 231(2):291-300. PubMed ID: 6491983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselectivity and stereoselectivity in the metabolism of trans-1,2-dihydroxy-1,2-dihydrobenz[a]anthracene by rat liver microsomes.
    Vyas KP; van Bladeren PJ; Thakker DR; Yagi H; Sayer JM; Levin W; Jerina DM
    Mol Pharmacol; 1983 Jul; 24(1):115-23. PubMed ID: 6865920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation.
    Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D
    Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liver microsomal metabolism of N-methylcarbazole: a probe for induction, inhibition, and species differences.
    Koop DR; Hollenberg PF
    Mol Pharmacol; 1980 Jan; 17(1):118-27. PubMed ID: 7383014
    [No Abstract]   [Full Text] [Related]  

  • 13. [Reductive degradation of metyrapone in rat liver].
    Kahl GF
    Naunyn Schmiedebergs Arch Pharmakol; 1970; 266(4):365-6. PubMed ID: 4397502
    [No Abstract]   [Full Text] [Related]  

  • 14. Synthesis of N-oxide derivatives of metyrapone and their detection as in vitro metabolites.
    Crooks PA; Damani LA; Cowan DA
    J Pharm Pharmacol; 1981 May; 33(5):309-12. PubMed ID: 6116779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of isozymes of cytochrome P-450 in the metabolism of N,N-dimethyl-4-aminoazobenzene in the rat.
    Levine WG; Lu AY
    Drug Metab Dispos; 1982; 10(2):102-9. PubMed ID: 6124393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid.
    Wang YP; Yan J; Fu PP; Chou MW
    Toxicol Lett; 2005 Mar; 155(3):411-20. PubMed ID: 15649625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phenobarbital and spironolactone treatment on the oxidative metabolism of antipyrine by rat liver microsomes.
    Szakács T; Veres Z; Vereczkey L
    Pol J Pharmacol; 2001; 53(1):11-9. PubMed ID: 11785906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes.
    Ferrara R; Tolando R; King LJ; Manno M
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of roxithromycin in phenobarbital-treated rat liver microsomes.
    Zhong DF; Zhang SQ; Sun L; Zhao XY
    Acta Pharmacol Sin; 2002 May; 23(5):455-60. PubMed ID: 11978197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of antiparkinson agent dopazinol by rat liver microsomes.
    Vyas KP; Kari PH; Ramjit HG; Pitzenberger SM; Hichens M
    Drug Metab Dispos; 1990; 18(6):1025-30. PubMed ID: 1981508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.