These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38088784)

  • 1. In Vitro Model of Prepacked Carbon Dioxide Absorber Use: Development and Testing.
    Jouwena J; Verbeke D; De Wolf AM; Neyrinck A; Hendrickx JFA
    Anesthesiology; 2024 Mar; 140(3):450-462. PubMed ID: 38088784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro performance of prefilled CO
    Omer M; Hendrickx JFA; De Ridder S; De Houwer A; Carette R; De Cooman S; De Wolf AM
    J Clin Monit Comput; 2018 Oct; 32(5):799-806. PubMed ID: 29238880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro performance of prefilled CO₂ absorbers with the Aisys®.
    Hendrickx JF; De Ridder SP; Dehouwer A; Carette R; De Cooman S; De Wolf AM
    J Clin Monit Comput; 2016 Apr; 30(2):193-202. PubMed ID: 25953416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space.
    Hurley EH; Keszler M
    Arch Dis Child Fetal Neonatal Ed; 2017 Mar; 102(2):F126-F130. PubMed ID: 27515984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memsorb™, a novel CO
    Bashraheel MK; Eerlings SA; De Wolf AM; Neyrinck A; Van de Velde M; Vandenbroucke G; Carette R; Feldman J; Hendrickx JFA
    J Clin Monit Comput; 2022 Dec; 36(6):1591-1600. PubMed ID: 35089526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the Impact of Carbon Dioxide Absorbent Performance Differences on Absorbent Cost During Low-Flow Anesthesia.
    Feldman JM; Lo C; Hendrickx J
    Anesth Analg; 2020 Feb; 130(2):374-381. PubMed ID: 30925559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Halothane absorption by dry soda lime].
    Stuttmann R; Knüttgen D; Müller MR; Winkert AT; Doehn M
    Anaesthesist; 1993 Mar; 42(3):157-61. PubMed ID: 8480902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The most proximal and accurate site for sampling end-tidal CO2 in infants.
    Halpern L; Bissonnette B
    Can J Anaesth; 1994 Oct; 41(10):984-90. PubMed ID: 8001218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental and economic impact of using increased fresh gas flow to reduce carbon dioxide absorbent consumption in the absence of inhalational anaesthetics.
    Zhong G; Abbas A; Jones J; Kong S; McCulloch T
    Br J Anaesth; 2020 Nov; 125(5):773-778. PubMed ID: 32859360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive carbon dioxide monitoring in patients with cystic fibrosis during general anesthesia: end-tidal versus transcutaneous techniques.
    May A; Humston C; Rice J; Nemastil CJ; Salvator A; Tobias J
    J Anesth; 2020 Feb; 34(1):66-71. PubMed ID: 31701307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Respiratory gas exchange. Anesthesia with enflurane or isoflurane in nitrous oxide during spontaneous and controlled ventilation].
    Bengtson JP; Arnestad JP; Bengtsson J; Bengtsson A; Stenqvist O
    Anaesthesist; 1993 May; 42(5):273-9. PubMed ID: 8317683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ventilator with an integrated gas-exchange monitoring function.
    Weyland W; Weyland A; Gefeller O; al-Soufi S; Sydow M; Braun U
    Crit Care Med; 1994 May; 22(5):864-71. PubMed ID: 8181298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Duration of carbon dioxide absorption by soda lime at low rates of fresh gas flow.
    Ohrn M; Gravenstein N; Good ML
    J Clin Anesth; 1991; 3(2):104-7. PubMed ID: 1903949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo carbon dioxide clearance of a low-flow extracorporeal carbon dioxide removal circuit in patients with acute exacerbations of chronic obstructive pulmonary disease.
    Barrett NA; Hart N; Camporota L
    Perfusion; 2020 Jul; 35(5):436-441. PubMed ID: 31928313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of the contributions by fresh gas flow rate, carbon dioxide concentration and desflurane partial pressure to carbon monoxide concentration during low fresh gas flows to a circle anaesthetic breathing system.
    Fan SZ; Lin YW; Chang WS; Tang CS
    Eur J Anaesthesiol; 2008 Aug; 25(8):620-6. PubMed ID: 18339215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vitro performance of a low flow extracorporeal carbon dioxide removal circuit.
    Barrett NA; Hart N; Camporota L
    Perfusion; 2020 Apr; 35(3):227-235. PubMed ID: 31441365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A clinical determination of optimal fresh gas flow in a baby EAR circuit.
    Theerapongpakdee S; Phanpanusit T; Horatanaruang D; Bunsangjaroen P; Limpkulwathanaporn P; Thananun M; Nonlhaopol D
    J Med Assoc Thai; 2009 May; 92(5):667-71. PubMed ID: 19459529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rebreathing improves accuracy of ventilatory monitoring.
    Bowie JR; Knox P; Downs JB; Smith RA
    J Clin Monit; 1995 Nov; 11(6):354-7. PubMed ID: 8576717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple method for isocapnic hyperventilation evaluated in a lung model.
    Hallén K; Stenqvist O; Ricksten SE; Lindgren S
    Acta Anaesthesiol Scand; 2016 May; 60(5):597-606. PubMed ID: 26688296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pneumoperitoneum on intraoperative pulmonary mechanics and gas exchange during laparoscopic gastric bypass.
    Nguyen NT; Anderson JT; Budd M; Fleming NW; Ho HS; Jahr J; Stevens CM; Wolfe BM
    Surg Endosc; 2004 Jan; 18(1):64-71. PubMed ID: 14625752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.