These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38088861)
1. Improving Natural Microcrystalline Graphite Performances by a Dual Modification Strategy toward Practical Application of Lithium Ion Batteries. Peng J; Tan H; Wu Z; Tang Y; Liu P; He L; Yang J; Hu S; Wang S; Wang X ACS Appl Mater Interfaces; 2023 Dec; 15(51):59552-59560. PubMed ID: 38088861 [TBL] [Abstract][Full Text] [Related]
2. Advancements and Prospects of Graphite Anode for Potassium-Ion Batteries. Yu J; Jiang M; Zhang W; Li G; Soomro RA; Sun N; Xu B Small Methods; 2023 Nov; 7(11):e2300708. PubMed ID: 37605458 [TBL] [Abstract][Full Text] [Related]
3. Lithium/Boron Co-doped Micrometer SiO Li XD; Zhao YM; Tian YF; Lu ZY; Fan M; Zhang XS; Tian H; Xu Q; Li HL; Guo YG ACS Appl Mater Interfaces; 2022 Jun; 14(24):27854-27860. PubMed ID: 35678306 [TBL] [Abstract][Full Text] [Related]
4. Revisiting the Roles of Natural Graphite in Ongoing Lithium-Ion Batteries. Zhao L; Ding B; Qin XY; Wang Z; Lv W; He YB; Yang QH; Kang F Adv Mater; 2022 May; 34(18):e2106704. PubMed ID: 35032965 [TBL] [Abstract][Full Text] [Related]
5. Carbon-coated Ni Kouchi K; Tayoury M; Chari A; Hdidou L; Chchiyai Z; El Kamouny K; Tamraoui Y; Manoun B; Alami J; Dahbi M Phys Chem Chem Phys; 2024 Feb; 26(9):7492-7503. PubMed ID: 38356390 [TBL] [Abstract][Full Text] [Related]
6. Biochemical fulvic acid derived amorphous carbon modified microcrystalline graphite as low-cost anode for potassium-ion storage. Zhuo P; Jiang J; Jiang Y; Hao Y; He Q; Chen T; Ding E; Zhang Y; Han Y; Si W; Ju Z; Cao Y; Xing Y; Gui X J Colloid Interface Sci; 2023 Oct; 648():108-116. PubMed ID: 37295362 [TBL] [Abstract][Full Text] [Related]
7. Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials. Song G; Ryu J; Ko S; Bang BM; Choi S; Shin M; Lee SY; Park S Chem Asian J; 2016 Jun; 11(11):1711-7. PubMed ID: 27027583 [TBL] [Abstract][Full Text] [Related]
8. Expanded graphite incorporated with Li Zhao J; Zhu X; Zhang W; Qiu J; Zhai F; Zhang H; Cao G; Gao S; Ding F; Xiang Y RSC Adv; 2024 Apr; 14(16):11276-11283. PubMed ID: 38595709 [TBL] [Abstract][Full Text] [Related]
9. Na-Ion Battery Anodes: Materials and Electrochemistry. Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764 [TBL] [Abstract][Full Text] [Related]
10. Low-Cost Al2O3 Coating Layer As a Preformed SEI on Natural Graphite Powder To Improve Coulombic Efficiency and High-Rate Cycling Stability of Lithium-Ion Batteries. Feng T; Xu Y; Zhang Z; Du X; Sun X; Xiong L; Rodriguez R; Holze R ACS Appl Mater Interfaces; 2016 Mar; 8(10):6512-9. PubMed ID: 26913475 [TBL] [Abstract][Full Text] [Related]
11. Prelithiated Surface Oxide Layer Enabled High-Performance Si Anode for Lithium Storage. Zhu Y; Hu W; Zhou J; Cai W; Lu Y; Liang J; Li X; Zhu S; Fu Q; Qian Y ACS Appl Mater Interfaces; 2019 May; 11(20):18305-18312. PubMed ID: 31046217 [TBL] [Abstract][Full Text] [Related]
12. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823 [TBL] [Abstract][Full Text] [Related]
13. Novel hard carbon/graphite composites synthesized by a facile Ge C; Fan Z; Zhang J; Qiao Y; Wang J; Ling L RSC Adv; 2018 Oct; 8(60):34682-34689. PubMed ID: 35548609 [TBL] [Abstract][Full Text] [Related]
14. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries. Ying H; Han WQ Adv Sci (Weinh); 2017 Nov; 4(11):1700298. PubMed ID: 29201624 [TBL] [Abstract][Full Text] [Related]
15. A Novel and Sustainable Approach to Enhance the Li-Ion Storage Capability of Recycled Graphite Anode from Spent Lithium-Ion Batteries. Bhar M; Bhattacharjee U; Sarma D; Krishnamurthy S; Yalamanchili K; Mahata A; Martha SK ACS Appl Mater Interfaces; 2023 Jun; 15(22):26606-26618. PubMed ID: 37226804 [TBL] [Abstract][Full Text] [Related]
16. Achieving a High-Performance Carbon Anode through the P-O Bond for Lithium-Ion Batteries. Tao H; Du S; Zhang F; Xiong L; Zhang Y; Ma H; Yang X ACS Appl Mater Interfaces; 2018 Oct; 10(40):34245-34253. PubMed ID: 30215504 [TBL] [Abstract][Full Text] [Related]
17. Green Synergy Conversion of Waste Graphite in Spent Lithium-Ion Batteries to GO and High-Performance EG Anode Material. Yang S; Yang G; Lan M; Zou J; Zhang X; Lai F; Xiang D; Wang H; Liu K; Li Q Small; 2024 May; 20(22):e2305785. PubMed ID: 38143289 [TBL] [Abstract][Full Text] [Related]
18. From graphite of used lithium-ion batteries to holey graphite coated by carbon with enhanced lithium storage capability. Huang S; Fan Q; Chen X; Wu Y; Liu L; Yu Z; Xu J J Colloid Interface Sci; 2024 Dec; 676():197-206. PubMed ID: 39024820 [TBL] [Abstract][Full Text] [Related]
19. Microwave-Irradiation-Assisted Combustion toward Modified Graphite as Lithium Ion Battery Anode. Chen K; Yang H; Liang F; Xue D ACS Appl Mater Interfaces; 2018 Jan; 10(1):909-914. PubMed ID: 29261274 [TBL] [Abstract][Full Text] [Related]
20. Recycled Graphite from Spent Lithium-Ion Batteries as a Conductive Framework Directly Applied in Red Phosphorus-Based Anodes. Huang H; Xie D; Zheng Z; Zeng Y; Xie S; Liu P; Zhang M; Wang S; Cheng F ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37913551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]