These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38088861)
41. Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries. Maddipatla R; Loka C; Lee KS ACS Appl Mater Interfaces; 2020 Dec; 12(49):54608-54618. PubMed ID: 33231419 [TBL] [Abstract][Full Text] [Related]
42. High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method. Gong H; Xiao H; Ye L; Ou X Waste Manag; 2023 Sep; 171():292-302. PubMed ID: 37696171 [TBL] [Abstract][Full Text] [Related]
43. Toward Highly Stable Anode for Secondary Batteries: Employing TiO Luo R; Hu X; Zhang N; Li L; Wu F; Chen R Small; 2022 Mar; 18(11):e2105713. PubMed ID: 35060316 [TBL] [Abstract][Full Text] [Related]
44. Natural Stibnite for Lithium-/Sodium-Ion Batteries: Carbon Dots Evoked High Initial Coulombic Efficiency. Xiang Y; Xu L; Yang L; Ye Y; Ge Z; Wu J; Deng W; Zou G; Hou H; Ji X Nanomicro Lett; 2022 Jun; 14(1):136. PubMed ID: 35713745 [TBL] [Abstract][Full Text] [Related]
45. CVD growth of rhenium sulfide on carbon nanotubes as an anode for improving the performance of lithium ion batteries. Cao K; Hu Z; Wang J; Liu F; Wu X; Wang Z; Wang L Nanotechnology; 2021 Apr; 32(15):155703. PubMed ID: 33378747 [TBL] [Abstract][Full Text] [Related]
46. Functionally Gradient Silicon/Graphite Composite Electrodes Enabling Stable Cycling and High Capacity for Lithium-Ion Batteries. Zhang W; Gui S; Li W; Tu S; Li G; Zhang Y; Sun Y; Xie J; Zhou H; Yang H ACS Appl Mater Interfaces; 2022 Nov; 14(46):51954-51964. PubMed ID: 36350880 [TBL] [Abstract][Full Text] [Related]
47. A Low-Cost and High-Capacity SiO Xu M; Ma J; Niu G; Yang H; Sun M; Zhao X; Yang T; Chen L; Wang C ACS Omega; 2020 Jul; 5(27):16440-16447. PubMed ID: 32685807 [TBL] [Abstract][Full Text] [Related]
48. Enabling Long-Cycling Life of Si-on-Graphite Composite Anodes via Fabrication of a Multifunctional Polymeric Artificial Solid-Electrolyte Interphase Protective Layer. Abdollahifar M; Vinograd A; Lu CY; Chang SJ; Müller J; Frankenstein L; Placke T; Kwade A; Winter M; Chao CY; Wu NL ACS Appl Mater Interfaces; 2022 Aug; 14(34):38824-38834. PubMed ID: 35982536 [TBL] [Abstract][Full Text] [Related]
49. Tailoring the Surface of Natural Graphite with Functional Metal Oxides via Facile Crystallization for Lithium-Ion Batteries. Lee JW; Kim SY; Rhee DY; Park S; Jung JY; Park MS ACS Appl Mater Interfaces; 2022 Jul; 14(26):29797-29805. PubMed ID: 35737999 [TBL] [Abstract][Full Text] [Related]
50. Silicon/Graphite/Amorphous Carbon as Anode Materials for Lithium Secondary Batteries. Duan H; Xu H; Wu Q; Zhu L; Zhang Y; Yin B; He H Molecules; 2023 Jan; 28(2):. PubMed ID: 36677522 [TBL] [Abstract][Full Text] [Related]
51. Design and Performance of a New Zn Chchiyai Z; El Ghali O; Lahmar A; Alami J; Manoun B Molecules; 2023 Oct; 28(20):. PubMed ID: 37894488 [TBL] [Abstract][Full Text] [Related]
52. A facile and low-cost Al Zhu H; Shiraz MHA; Liu L; Hu Y; Liu J Nanotechnology; 2021 Apr; 32(14):144001. PubMed ID: 33348333 [TBL] [Abstract][Full Text] [Related]
53. Practical Approach to Enhance Compatibility in Silicon/Graphite Composites to Enable High-Capacity Li-Ion Battery Anodes. Naboka O; Yim CH; Abu-Lebdeh Y ACS Omega; 2021 Feb; 6(4):2644-2654. PubMed ID: 33553882 [TBL] [Abstract][Full Text] [Related]
54. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery. Zhang H; Ming H; Zhang W; Cao G; Yang Y ACS Appl Mater Interfaces; 2017 Jul; 9(28):23766-23774. PubMed ID: 28650143 [TBL] [Abstract][Full Text] [Related]
55. Stabilizing Lithium Metal Anode Enabled by a Natural Polymer Layer for Lithium-Sulfur Batteries. Cui C; Zhang R; Fu C; Xie B; Du C; Wang J; Gao Y; Yin G; Zuo P ACS Appl Mater Interfaces; 2021 Jun; 13(24):28252-28260. PubMed ID: 34101431 [TBL] [Abstract][Full Text] [Related]
56. Fundamental Understanding of the Low Initial Coulombic Efficiency in SiO Wu J; Dong Q; Zhang Q; Xu Y; Zeng X; Yuan Y; Lu J Adv Mater; 2024 Aug; 36(33):e2405751. PubMed ID: 38934354 [TBL] [Abstract][Full Text] [Related]
57. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries. Liu H; Chen Y; Jiang B; Zhao Y; Guo X; Ma T Dalton Trans; 2020 May; 49(17):5669-5676. PubMed ID: 32292976 [TBL] [Abstract][Full Text] [Related]
58. Structure regulated 3D flower-like lignin-based anode material for lithium-ion batteries and its storage kinetics. Wu KL; Zhang WW; Jiang TB; Wu M; Liu W; Wang HM; Hou QX Int J Biol Macromol; 2023 Feb; 227():146-157. PubMed ID: 36529218 [TBL] [Abstract][Full Text] [Related]
59. MXene-encapsulated hollow Fe Guo Y; Zhang D; Yang Y; Wang Y; Bai Z; Chu PK; Luo Y Nanoscale; 2021 Mar; 13(8):4624-4633. PubMed ID: 33605964 [TBL] [Abstract][Full Text] [Related]
60. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]