BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 38089647)

  • 1. Derivation, validation, and prediction of loading-induced mineral apposition rates at endocortical and periosteal bone surfaces based on fluid velocity and pore pressure.
    Singh S; Singh SJ; Prasad J
    Bone Rep; 2023 Dec; 19():101729. PubMed ID: 38089647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading.
    Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S
    Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading.
    Li J; Burr DB; Turner CH
    Calcif Tissue Int; 2002 Apr; 70(4):320-9. PubMed ID: 12004337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of cortical bone mineral apposition rate in response to loading using an adaptive neuro-fuzzy inference system.
    Kumar R; Pathak VK
    Comput Methods Biomech Biomed Engin; 2023 Feb; 26(3):261-280. PubMed ID: 35373664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course for bone formation with long-term external mechanical loading.
    Cullen DM; Smith RT; Akhter MP
    J Appl Physiol (1985); 2000 Jun; 88(6):1943-8. PubMed ID: 10846003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canalicular fluid flow induced by loading waveforms: A comparative analysis.
    Kumar R; Tiwari AK; Tripathi D; Shrivas NV; Nizam F
    J Theor Biol; 2019 Jun; 471():59-73. PubMed ID: 30930062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interstitial fluid velocity is decreased around cortical bone vascular pores and depends on osteocyte position in a rat model of disuse osteoporosis.
    Gatti V; Gelbs MJ; Guerra RB; Gerber MB; Fritton SP
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1135-1146. PubMed ID: 33666792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STAT3 Hyperactivation Due to SOCS3 Deletion in Murine Osteocytes Accentuates Responses to Exercise- and Load-Induced Bone Formation.
    McGregor NE; Walker EC; Chan AS; Poulton IJ; Cho EH; Windahl SH; Sims NA
    J Bone Miner Res; 2022 Mar; 37(3):547-558. PubMed ID: 34870348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modeling for osteogenic potential assessment of physical exercises based on loading-induced mechanobiological environments in cortical bone remodeling.
    Mertiya AS; Tiwari AK; Mishra A; Main RP; Tripathi D; Tiwari A
    Biomech Model Mechanobiol; 2023 Feb; 22(1):281-295. PubMed ID: 36305993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomical variations in cortical bone surface permeability: Tibia versus femur.
    Kumar R; Tiwari AK; Tripathi D; Main RP; Kumar N; Sihota P; Ambwani S; Sharma NN
    J Mech Behav Biomed Mater; 2021 Jan; 113():104122. PubMed ID: 33125957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Periosteal Bone Surface is Less Mechano-Responsive than the Endocortical.
    Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM
    Sci Rep; 2016 Mar; 6():23480. PubMed ID: 27004741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging changes mechanical loading thresholds for bone formation in rats.
    Turner CH; Takano Y; Owan I
    J Bone Miner Res; 1995 Oct; 10(10):1544-9. PubMed ID: 8686511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone response to mechanical loading in adult rats with collagen-induced arthritis.
    Kameyama Y; Hagino H; Okano T; Enokida M; Fukata S; Teshima R
    Bone; 2004 Oct; 35(4):948-56. PubMed ID: 15454102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of physiological loading induced interstitial fluid motion in muscle standardized femur: Healthy vs. osteoporotic bone.
    Shrivas NV; Badhyal S; Tiwari AK; Mishra A; Tripathi D; Patil S
    Comput Methods Programs Biomed; 2023 Jul; 237():107592. PubMed ID: 37209515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico modeling of bone adaptation to rest-inserted loading: Strain energy density versus fluid flow as stimulus.
    Tiwari AK; Kumar R; Tripathi D; Badhyal S
    J Theor Biol; 2018 Jun; 446():110-127. PubMed ID: 29534894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative regional associations between remodeling, modeling, and osteocyte apoptosis and density in rabbit tibial midshafts.
    Hedgecock NL; Hadi T; Chen AA; Curtiss SB; Martin RB; Hazelwood SJ
    Bone; 2007 Mar; 40(3):627-37. PubMed ID: 17157571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced periosteal and endocortical responses to axial tibial compression loading in conditional connexin43 deficient mice.
    Grimston SK; Watkins MP; Brodt MD; Silva MJ; Civitelli R
    PLoS One; 2012; 7(9):e44222. PubMed ID: 22970183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response.
    Birkhold AI; Razi H; Duda GN; Checa S; Willie BM
    Calcif Tissue Int; 2017 Mar; 100(3):255-270. PubMed ID: 27999894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.