These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 38089647)

  • 21. Impaired marrow osteogenesis is associated with reduced endocortical bone formation but does not impair periosteal bone formation in long bones of SAMP6 mice.
    Silva MJ; Brodt MD; Ko M; Abu-Amer Y
    J Bone Miner Res; 2005 Mar; 20(3):419-27. PubMed ID: 15746986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture.
    van Tol AF; Schemenz V; Wagermaier W; Roschger A; Razi H; Vitienes I; Fratzl P; Willie BM; Weinkamer R
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32251-32259. PubMed ID: 33288694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of loading frequency on mechanically induced bone formation.
    Hsieh YF; Turner CH
    J Bone Miner Res; 2001 May; 16(5):918-24. PubMed ID: 11341337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy-restricted diet benefits body composition but degrades bone integrity in middle-aged obese female rats.
    Shen CL; Zhu W; Gao W; Wang S; Chen L; Chyu MC
    Nutr Res; 2013 Aug; 33(8):668-76. PubMed ID: 23890357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone response to in vivo mechanical loading in C3H/HeJ mice.
    Pedersen EA; Akhter MP; Cullen DM; Kimmel DB; Recker RR
    Calcif Tissue Int; 1999 Jul; 65(1):41-6. PubMed ID: 10369732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of parathyroid hormone on cortical bone response to in vivo external loading of the rat tibia.
    Hagino H; Okano T; Akhter MP; Enokida M; Teshima R
    J Bone Miner Metab; 2001; 19(4):244-50. PubMed ID: 11448017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An in silico model for woven bone adaptation to heavy loading conditions in murine tibia.
    Goyal A; Prasad J
    Biomech Model Mechanobiol; 2022 Oct; 21(5):1425-1440. PubMed ID: 35796844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women.
    Szulc P; Seeman E; Duboeuf F; Sornay-Rendu E; Delmas PD
    J Bone Miner Res; 2006 Dec; 21(12):1856-63. PubMed ID: 17002580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling.
    Carrieroa A; Pereirab AF; Wilson AJ; Castagno S; Javaheri B; Pitsillides AA; Marenzana M; Shefelbine SJ
    Bone Rep; 2018 Jun; 8():72-80. PubMed ID: 29904646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification of the in vivo four-point loading model for studying mechanically induced bone adaptation.
    Forwood MR; Bennett MB; Blowers AR; Nadorfi RL
    Bone; 1998 Sep; 23(3):307-10. PubMed ID: 9737355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A multi-layered poroelastic slab model under cyclic loading for a single osteon.
    Chen Y; Wang W; Ding S; Wang X; Chen Q; Li X
    Biomed Eng Online; 2018 Jul; 17(1):97. PubMed ID: 30016971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Periosteal bone formation stimulated by externally induced bending strains.
    Raab-Cullen DM; Akhter MP; Kimmel DB; Recker RR
    J Bone Miner Res; 1994 Aug; 9(8):1143-52. PubMed ID: 7976496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of mineralization indices of modeling and remodeling over eight months in middiaphyseal cross sections of femurs from adult swine.
    Iwaniec UT; Crenshaw TD
    Anat Rec; 1998 Feb; 250(2):136-45. PubMed ID: 9489773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of loading parameters for murine axial tibial loading: Stimulating cortical bone formation while reducing loading duration.
    Sun D; Brodt MD; Zannit HM; Holguin N; Silva MJ
    J Orthop Res; 2018 Feb; 36(2):682-691. PubMed ID: 28888055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational Investigation on the Biomechanical Responses of the Osteocytes to the Compressive Stimulus: A Poroelastic Model.
    Wang L; Dong J; Xian CJ
    Biomed Res Int; 2018; 2018():4071356. PubMed ID: 29581973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.
    Kwon RY; Meays DR; Meilan AS; Jones J; Miramontes R; Kardos N; Yeh JC; Frangos JA
    PLoS One; 2012; 7(3):e33336. PubMed ID: 22413015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling.
    Rhee Y; Allen MR; Condon K; Lezcano V; Ronda AC; Galli C; Olivos N; Passeri G; O'Brien CA; Bivi N; Plotkin LI; Bellido T
    J Bone Miner Res; 2011 May; 26(5):1035-46. PubMed ID: 21140374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osteocytes' expression of the PTH/PTHrP receptor has differing effects on endocortical and periosteal bone formation during adenine-induced CKD.
    Gardinier JD; Daly-Seiler CS; Zhang C
    Bone; 2020 Apr; 133():115186. PubMed ID: 31987988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure.
    Scheiner S; Pivonka P; Hellmich C
    Biomech Model Mechanobiol; 2016 Feb; 15(1):9-28. PubMed ID: 26220453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.