These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38090138)
21. Fine tuning of photophysical properties of meso-meso-linked ZnII-diporphyrins by dihedral angle control. Yoshida N; Ishizuka T; Osuka A; Jeong DH; Cho HS; Kim D; Matsuzaki Y; Nogami A; Tanaka K Chemistry; 2003 Jan; 9(1):58-75. PubMed ID: 12506365 [TBL] [Abstract][Full Text] [Related]
22. Directing the Self-Assembly Behaviour of Porphyrin-Based Supramolecular Systems. van der Weegen R; Teunissen AJ; Meijer EW Chemistry; 2017 Mar; 23(15):3773-3783. PubMed ID: 28111823 [TBL] [Abstract][Full Text] [Related]
23. Multilayer nanostructured porphyrin arrays constructed by layer-by-layer self-assembly. Smith AR; Ruggles JL; Yu A; Gentle IR Langmuir; 2009 Sep; 25(17):9873-8. PubMed ID: 19572527 [TBL] [Abstract][Full Text] [Related]
24. Light-harvesting supramolecular porphyrin macrocycle accommodating a fullerene-tripodal ligand. Kuramochi Y; Satake A; Itou M; Ogawa K; Araki Y; Ito O; Kobuke Y Chemistry; 2008; 14(9):2827-41. PubMed ID: 18228544 [TBL] [Abstract][Full Text] [Related]
25. The interaction of 2-hydroquinone-5,10,15,20-tetra(p-hydroxyphenyl)porphyrin with surfactants: solubilization and J-aggregates. Li X; Xie Y; Chen Z; Zou G Spectrochim Acta A Mol Biomol Spectrosc; 2005 Sep; 61(11-12):2468-73. PubMed ID: 16043040 [TBL] [Abstract][Full Text] [Related]
26. Systematic investigation on the central metal ion dependent binding geometry of M-meso-tetrakis(N-methylpyridinium-4-yl)porphyrin to DNA and their efficiency as an acceptor in DNA-mediated energy transfer. Kim YR; Gong L; Park J; Jang YJ; Kim J; Kim SK J Phys Chem B; 2012 Feb; 116(7):2330-7. PubMed ID: 22268624 [TBL] [Abstract][Full Text] [Related]
27. Photophysics and visible light photodissociation of supramolecular meso-tetra(4-pyridyl) porphyrin/RuCl Lopes JMS; Costa SN; Batista AA; Dinelli LR; Araujo PT; Neto NMB Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118351. PubMed ID: 32361521 [TBL] [Abstract][Full Text] [Related]
29. Influence of supramolecular organization on energy transfer properties in chiral oligo(p-phenylene vinylene) porphyrin assemblies. Hoeben FJ; Wolffs M; Zhang J; Feyter SD; Leclère P; Schenning AP; Meijer EW J Am Chem Soc; 2007 Aug; 129(31):9819-28. PubMed ID: 17629275 [TBL] [Abstract][Full Text] [Related]
30. Mixed substituted porphyrins: structural and electrochemical redox properties. Bhyrappa P; Sankar M; Varghese B Inorg Chem; 2006 May; 45(10):4136-49. PubMed ID: 16676974 [TBL] [Abstract][Full Text] [Related]
31. d(10)-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4'-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity. Lan YQ; Li SL; Fu YM; Xu YH; Li L; Su ZM; Fu Q Dalton Trans; 2008 Dec; (47):6796-807. PubMed ID: 19153627 [TBL] [Abstract][Full Text] [Related]
33. Water-Soluble Non-Ionic PEGylated Porphyrins: A Versatile Category of Dyes for Basic Science and Applications. Villari V; Micali N; Nicosia A; Mineo P Top Curr Chem (Cham); 2021 Aug; 379(5):35. PubMed ID: 34382110 [TBL] [Abstract][Full Text] [Related]
34. Engineering orthogonality in supramolecular polymers: from simple scaffolds to complex materials. Elacqua E; Lye DS; Weck M Acc Chem Res; 2014 Aug; 47(8):2405-16. PubMed ID: 24905869 [TBL] [Abstract][Full Text] [Related]
35. Exploring Linker-Group-Guided Self-Assembly of Ultrathin 2D Supramolecular Nanosheets in Water for Synergistic Cancer Phototherapy. Guo Y; Li L; Huang S; Sun H; Shao Y; Li Z; Song F ACS Appl Mater Interfaces; 2023 Nov; 15(47):54851-54862. PubMed ID: 37968254 [TBL] [Abstract][Full Text] [Related]
36. A general method for constructing optically active supramolecular assemblies from intrinsically achiral water-insoluble free-base porphyrins. Zhang Y; Chen P; Liu M Chemistry; 2008; 14(6):1793-803. PubMed ID: 18064623 [TBL] [Abstract][Full Text] [Related]
37. Photophysical Properties of Organoplatinum(II) Compounds and Derived Self-Assembled Metallacycles and Metallacages: Fluorescence and its Applications. Saha ML; Yan X; Stang PJ Acc Chem Res; 2016 Nov; 49(11):2527-2539. PubMed ID: 27736060 [TBL] [Abstract][Full Text] [Related]
38. Carbon-bridged Oligo(phenylenevinylene)s as Light-harvesting Antenna for Porphyrins. Tsuji H; Ichimura A; Kudo M; Sukegawa J; Nakamura E Chem Asian J; 2019 May; 14(10):1672-1675. PubMed ID: 30656848 [TBL] [Abstract][Full Text] [Related]
39. Substituent effects of porphyrins on structures and photophysical properties of amphiphilic porphyrin aggregates. Hosomizu K; Oodoi M; Umeyama T; Matano Y; Yoshida K; Isoda S; Isosomppi M; Tkachenko NV; Lemmetyinen H; Imahori H J Phys Chem B; 2008 Dec; 112(51):16517-24. PubMed ID: 19053673 [TBL] [Abstract][Full Text] [Related]
40. Spectral and photophysical modifications of porphyrins attached to core-shell nanoparticles. Theory and experiment. Kelm A; Ostapko J; Gajewska A; Sánchez-Iglesias A; Waluk J Methods Appl Fluoresc; 2021 Aug; 9(4):. PubMed ID: 34256360 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]