These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38090222)

  • 1. A simulation model (PostPLANT-Soil) for predicting pesticide concentrations in succeeding leafy vegetables: I. Validation with experimental data in a Japanese Andosol field.
    Inao K; Namiki S; Motoki Y; Seike N; Watanabe E
    J Pestic Sci; 2023 Nov; 48(4):117-127. PubMed ID: 38090222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simulation model (PostPLANT-Soil) for predicting pesticide concentrations in succeeding leafy vegetables: II. Validation with experimental data on plant uptake in a growth chamber.
    Namiki S; Inao K; Motoki Y; Seike N; Watanabe E
    J Pestic Sci; 2023 Nov; 48(4):175-186. PubMed ID: 38090220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved PADDY model including uptake by rice roots to predict pesticide behavior in paddy fields under nursery-box and submerged applications.
    Inao K; Iwafune T; Horio T
    J Pestic Sci; 2018 May; 43(2):142-152. PubMed ID: 30363144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of theoretical and experimental values for plant uptake of pesticide from soil.
    Hwang JI; Lee SE; Kim JE
    PLoS One; 2017; 12(2):e0172254. PubMed ID: 28212386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing potential soil pollution from plant waste disposal: A modeling analysis of pesticide contamination.
    Li Z
    Sci Total Environ; 2024 Jan; 907():167859. PubMed ID: 37852498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic modeling of pesticide uptake with a 3D plant architecture model.
    Jorda H; Huber K; Kunkel A; Vanderborght J; Javaux M; Oberdörster C; Hammel K; Schnepf A
    Environ Sci Pollut Res Int; 2021 Oct; 28(39):55678-55689. PubMed ID: 34142318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical approach, dissipation pattern and risk assessment of pesticide residue in green leafy vegetables: A comprehensive review.
    Farha W; Abd El-Aty AM; Rahman MM; Jeong JH; Shin HC; Wang J; Shin SS; Shim JH
    Biomed Chromatogr; 2018 Jan; 32(1):. PubMed ID: 29134675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the sorption behavior and plant uptake of pesticides in Japanese soils.
    Motoki Y
    J Pestic Sci; 2020 Aug; 45(3):159-165. PubMed ID: 32913419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling pesticide residue uptake by leguminous plants: a geocarpic fruit model for peanuts.
    Li Z
    Pest Manag Sci; 2023 Jan; 79(1):152-162. PubMed ID: 36107631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of soil sorption parameters of pesticides measured by batch and centrifugation methods using an andosol.
    Motoki Y; Iwafune T; Seike N; Inao K; Namiki S
    J Pestic Sci; 2018 Nov; 43(4):277-282. PubMed ID: 30479550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013.
    Yu Y; Hu S; Yang Y; Zhao X; Xue J; Zhang J; Gao S; Yang A
    BMC Public Health; 2017 Aug; 18(1):91. PubMed ID: 28768508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Progress in preparation of plant biomass-derived biochar and application in pesticide residues field].
    Zhang X; Zhen D; Liu F; Peng Q; Wang Z
    Se Pu; 2022 Jun; 40(6):499-508. PubMed ID: 35616195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting pesticide residues in pod fruits with a modified peel-like uptake model: A green pea demonstration.
    Li Z
    Ecotoxicol Environ Saf; 2023 Oct; 264():115421. PubMed ID: 37657391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling pesticides in global surface soils: Evaluating spatiotemporal patterns for USEtox-based steady-state concentrations.
    Li Z; Niu S
    Sci Total Environ; 2021 Oct; 791():148412. PubMed ID: 34412385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of the SPEC model for simulating the fate and transport of pesticide applied to Japanese upland agricultural soil.
    Boulange J; Thuyet DQ; Jaikaew P; Ishihara S; Watanabe H
    J Pestic Sci; 2016 Nov; 41(4):152-162. PubMed ID: 30363112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between growth stage of
    Namiki S; Seike N; Motoki Y
    J Pestic Sci; 2019 Feb; 44(1):1-8. PubMed ID: 30846904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the abilities of uptake and translocation from root to shoot of pesticides in soil.
    Namiki S
    J Pestic Sci; 2022 Aug; 47(3):131-138. PubMed ID: 36479451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling plant uptake of organic contaminants by root vegetables: The role of diffusion, xylem, and phloem uptake routes.
    Li Z
    J Hazard Mater; 2022 Jul; 434():128911. PubMed ID: 35460996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead and Arsenic Uptake by Leafy Vegetables Grown on Contaminated Soils: Effects of Mineral and Organic Amendments.
    McBride MB; Simon T; Tam G; Wharton S
    Water Air Soil Pollut; 2013 Jan; 224(1):. PubMed ID: 26884640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving pesticide uptake modeling and management in potatoes: A simple and approximate phloem-adjusted model.
    Li Z
    J Environ Manage; 2021 Oct; 296():113180. PubMed ID: 34225049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.